
Apache Kafka 3

Installing and Configuring Apache Storm
Date of Publish: 2018-08-30

http://docs.hortonworks.com

http://docs.hortonworks.com

Contents

Installing Apache Storm.. 3

Configuring Apache Storm for a Production Environment.................................7
Configuring Storm for Supervision..8
Configuring Storm Resource Usage...9

Apache Kafka Installing Apache Storm

Installing Apache Storm

Before you begin

• HDP cluster stack version 2.5.0 or later.
• (Optional) Ambari version 2.4.0 or later.

Procedure

1. Click the Ambari "Services" tab.

2. In the Ambari "Actions" menu, select "Add Service." This starts the Add Service Wizard, displaying the Choose
Services screen. Some of the services are enabled by default.

3. Scroll down through the alphabetic list of components on the Choose Services page, select "Storm", and click
"Next" to continue:

3

Apache Kafka Installing Apache Storm

4

Apache Kafka Installing Apache Storm

4. On the Assign Masters page, review node assignments for Storm components.

If you want to run Storm with high availability of nimbus nodes, select more than one nimbus node; the Nimbus
daemon automatically starts in HA mode if you select more than one nimbus node.

Modify additional node assignments if desired, and click "Next".

5. On the Assign Slaves and Clients page, choose the nodes that you want to run Storm supervisors and clients:

Storm supervisors are nodes from which the actual worker processes launch to execute spout and bolt tasks.

Storm clients are nodes from which you can run Storm commands (jar, list, and so on).

6. Click Next to continue.

7. Ambari displays the Customize Services page, which lists a series of services:

5

Apache Kafka Installing Apache Storm

For your initial configuration you should use the default values set by Ambari. If Ambari prompts you with the
message "Some configurations need your attention before you can proceed," review the list of properties and
provide the required information.

8. Click Next to continue.

9. When the wizard displays the Review page, ensure that all HDP components correspond to HDP 2.5.0 or later:

10. Click Deploy to begin installation.

11. Ambari displays the Install, Start and Test page. Review the status bar and messages for progress updates:

6

Apache Kafka Configuring Apache Storm for a Production Environment

12. When the wizard presents a summary of results, click "Complete" to finish installing Storm:

What to do next

To validate the Storm installation, complete the following steps:

1. Point your browser to the Storm UI URL for Ambari: http://<storm-ui-server>:8744 . You should see the Storm
UI web page.

2. Submit the following command:

storm jar /usr/hdp/current/storm-client/contrib/storm-starter/storm-starter-topologies-*.jar
org.apache.storm.starter.WordCountTopology wordcount

3. The WordCount sample topology should run successfully.

Configuring Apache Storm for a Production Environment

This chapter covers topics related to Storm configuration:

• Configuring Storm to operate under supervision
• Properties to review when you place topologies into production use
• Enabling audit to HDFS for a secure cluster

Instructions are for Ambari-managed clusters.

7

Apache Kafka Configuring Apache Storm for a Production Environment

Configuring Storm for Supervision
If you are deploying a production cluster with Storm, you should configure the Storm components to operate under
supervision.

Procedure

1. Stop all Storm components.

a. Using Ambari Web, browse to Services > Storm > Service Actions.
b. Choose Stop, and wait until the Storm service completes.

2. Stop Ambari Server:

ambari-server stop

3. Change the Supervisor and Nimbus command scripts in the Stack definition. On Ambari Server host, run:

sed -ir "s/scripts\/supervisor.py/scripts\/supervisor_prod.py/g" /var/lib/
ambari-server/resources/common-services/STORM/0.9.1.2.1/metainfo.xml

sed -ir "s/scripts\/nimbus.py/scripts\/nimbus_prod.py/g" /var/lib/ambari-
server/resources/common-services/STORM/0.9.1.2.1/metainfo.xml

4. Install supervisord on all Nimbus and Supervisor hosts.

a. Install EPEL repository:

yum install epel-release -y
b. Install supervisor package for supervisord:

yum install supervisor -y
c. Enable supervisord on autostart:

chkconfig supervisord on
d. Change supervisord configuration file permissions:

chmod 600 /etc/supervisord.conf

5. Configure supervisord to supervise Nimbus Server and Supervisors by appending the following to /etc/
supervisord.conf on all Supervisor host and Nimbus hosts:

[program:storm-nimbus]
command=env PATH=$PATH:/bin:/usr/bin/:/usr/jdk64/jdk1.7.0_67/bin/
 JAVA_HOME=/usr/jdk64/jdk1.7.0_67 /usr/hdp/current/storm-nimbus/bin/storm
 nimbus
user=storm
autostart=true
autorestart=true
startsecs=10
startretries=999
log_stdout=true
log_stderr=true
logfile=/var/log/storm/nimbus.out
logfile_maxbytes=20MB
logfile_backups=10

[program:storm-supervisor]
command=env PATH=$PATH:/bin:/usr/bin/:/usr/jdk64/jdk1.7.0_67/bin/
 JAVA_HOME=/usr/jdk64/jdk1.7.0_67 /usr/hdp/current/storm-supervisor/bin/
storm supervisor
user=storm
autostart=true
autorestart=true

8

Apache Kafka Configuring Apache Storm for a Production Environment

startsecs=10
startretries=999
log_stdout=true
log_stderr=true
logfile=/var/log/storm/supervisor.out
logfile_maxbytes=20MB
logfile_backups=10

Note:

Change /usr/jdk64/jdk1.7.0_67 to the location of the JDK being used by Ambari in your environment.

6. Start supervisord on all Supervisor and Nimbus hosts:

service supervisord start

7. Start Ambari Server:

ambari-server start

8. Start all other Storm components:

a. Using Ambari Web, browse to Services > Storm > Service Actions.
b. Choose Start.

Configuring Storm Resource Usage
The following settings can be useful for tuning Storm topologies in production environments.

Instructions are for a cluster managed by Ambari. For clusters that are not managed by Ambari, update the property in
its configuration file; for example, update the value of topology.message.timeout.secs in the storm.yaml configuration
file. (Do not update files manually if your cluster is managed by Ambari.)

Memory Allocation

Worker process max heap size: worker.childopts -
XmX option

Maximum JVM heap size for the worker JVM. The
default Ambari value is 768 MB. On a production
system, this value should be based on workload and
machine capacity. If you observe out-of-memory errors
in the log, increase this value and fine tune it based on
throughput; 1024 MB should be a reasonable value to
start with.

To set maximum heap size for the worker JVM, navigate
to the "Advanced storm-site" category and append the -
Xmx option to worker.childopts setting. The following
option sets maximum heap size to 1 GB: -Xmx1024m

Logviewer process max heap size: logviewer.childopts
-Xmx option

Maximum JVM heap size for the logviewer process. The
default is 128 MB. On production machines you should
consider increasing the logviewer.childopts -Xmx option
to 768 MB or more (1024 MB should be a sufficient for
an upper-end value).

Message Throughput

topology.max.spout.pending Maximum number of messages that can be pending in a
spout at any time. The default is null (no limit).

The setting applies to all core Storm and Trident
topologies in a cluster:

9

Apache Kafka Configuring Apache Storm for a Production Environment

• For core Storm, this value specifies the maximum
number of tuples that can be pending: tuples that have
been emitted from a spout but have not been acked or
failed yet.

• For Trident, which process batches in core, this
property specifies the maximum number of batches
that can be pending.

If you expect bolts to be slow in processing tuples (or
batches) and you do not want internal buffers to fill up
and temporarily stop emitting tuples to downstream
bolts, you should set topology.max.spout.pending to a
starting value of 1000 (for core Storm) or a value of 1
(for Trident), and increase the value depending on your
throughput requirements.

You can override this value for a specific topology when
you submit the topology. The following example restricts
the number of pending tuples to 100 for a topology:

$ storm jar -c topology.max.spout.pending=100 jar args...

If you plan to use windowing functionality, set this
value to null, or increase it to cover the estimated
maximum number of active tuples in a single window.
For example, if you define a sliding window with a
duration of 10 minutes and a sliding interval of 1 minute,
set topology.max.spout.pending to the maximum number
of tuples that you expect to receive within an 11-minute
interval.

This setting has no effect on spouts that do not anchor
tuples while emitting.

topology.message.timeout.secs Maximum amount of time given to the topology to
fully process a tuple tree from the core-storm API, or a
batch from the Trident API, emitted by a spout. If the
message is not acked within this time frame, Storm fails
the operation on the spout. The default is 30 seconds.

If you plan to use windowing functionality, set this value
based on your windowing definitions. For example, if
you define a 10 minute sliding window with a 1 minute
sliding interval, you should set this value to at least 11
minutes.

You can also set this value at the topology level when
you submit a topology; for example:

$ storm jar -c topology.message.timeout.secs=660 jar
args...

Nimbus Node Resources

nimbus.thrift.max_buffer_size Maximum buffer size that the Nimbus Thrift server
allocates for servicing requests. The default is 1 MB. If
you plan to submit topology files larger than 100 MB,
consider increasing this value.

10

Apache Kafka Configuring Apache Storm for a Production Environment

nimbus.thrift.threads Number of threads to be used by the Nimbus Thrift
server. The default is 64 threads. If you have more than
ten hosts in your Storm cluster, consider increasing
this value to a minimum of 196 threads, to handle the
workload associated with multiple workers making
multiple requests on each host.

You can set this value by adding the property and its
value in the Custom storm-site category, as shown in the
following graphic:

Number of Workers on a Supervisor Node

supervisor.slots.ports List of ports that can run workers on a supervisor node.
The length of this list defines the number of workers
that can be run on a supervisor node; there is one
communication port per worker.

Use this configuration to tune how many workers to
run on each machine. Adjust the value based on how
many resources each worker will consume, based on
the topologies you will submit (as opposed to machine
capacity).

Number of Event Logger Tasks

topology.eventlogger.executors Number of event logger tasks created for topology event
logging. The default is 0; no event logger tasks are
created.

If you enable topology event logging, you must set this
value to a number greater than zero, or to null:

• topology.eventlogger.executors: <n> creates n event
logger tasks for the topology. A value of 1 should be
sufficient to handle most event logging use cases.

• topology.eventlogger.executors: null creates one
event logger task per worker. This is only needed if

11

Apache Kafka Configuring Apache Storm for a Production Environment

you plan to use a high sampling percentage, such as
logging all tuples from all spouts and bolts.

Storm Metadata Directory

storm.local.dir Local directory where Storm daemons store topology
metadata. You need not change the default value, but
if you do change it, set it to a durable directory (not a
directory such as /tmp).

12

	Contents
	Installing Apache Storm
	Configuring Apache Storm for a Production Environment
	Configuring Storm for Supervision
	Configuring Storm Resource Usage

