
using ambari core services 2

Using Ambari Core Services
Date of Publish: 2018-04-30

http://docs.hortonworks.com

http://docs.hortonworks.com

using ambari core services | Contents | ii

Contents

Using Ambari Core Services... 4
Understanding Ambari Metrics Service...4

Access Grafana... 4
View Grafana dashboards...5
View selected metrics in a Grafana dashboard..7
View metrics for selected hosts... 8

Grafana dashboards reference.. 9
AMS HBase dashboards...9
Ambari dashboards... 15
Druid Dashboards... 16
HDFS Dashboards.. 17
YARN Dashboards... 20
Hive Dashboards...23
Hive LLAP Dashboards... 24
HBase Dashboards.. 28
Kafka Dashboards...35
Storm Dashboards...37
System Dashboards...38
NiFi Dashboard...40

Tuning performance for AMS..41
Customize the AMS collector mode.. 41
Customize AMS TTL settings..42
Customize AMS memory settings..43
Customize AMS environment specific settings for a cluster...44
Move the AMS metrics collector...45
Enable specific HBase metrics...45

Setting up AMS security.. 46
Change the Grafana admin password...46
Set up https for Grafana...46
Set up https for AMS... 47

Understanding Ambari log search..49
Install Log Search...49
Access log search UI..50
View logs for background operations.. 50
View logs for each host... 51
View service logs... 51
View audit logs...52

Understanding Ambari Infra...53
Operation Modes...54
Connect to Solr...54
Record schema..54
Extract records.. 54
Write data to HDFS..55
Write data to S3..55
Write data locally... 55
Example delete indexed data..56
Example archive indexed data..56
Example save indexed data.. 56
Example analyze archived, indexed data with Hive.. 57

using ambari core services | Contents | iii

Example Hadoop logs...57
Example audit logs... 57
Example HDFS audit logs..57
Example Ambari audit logs..58
Example Ranger audit logs.. 59

Tuning performance for Ambari Infra... 59
Tuning your operating system for use with Solr... 59
Tuning JVM settings for Solr.. 60
Tuning GC settings for Solr...60
Tuning environment specific parameters... 61
Adding new shards for Solr... 64
Reindexing data to reduce Solr out of memory exception errors.. 64

using ambari core services Using Ambari Core Services

Using Ambari Core Services

The Ambari core services enable you to monitor, analyze, and search the operating status of hosts in your cluster.

Understanding Ambari Metrics Service
Ambari Metrics System (AMS) collects, aggregates, and serves Hadoop and system metrics in Ambari-managed
clusters.

AMS has four components: Metrics Monitors, Hadoop Sinks, Metrics Collector, and Grafana.

• Metrics Monitors on each host in the cluster collect system-level metrics and publish to the Metrics Collector.
• Hadoop Sinks plug in to Hadoop components to publish Hadoop metrics to the Metrics Collector.
• The Metrics Collector is a daemon that runs on a specific host in the cluster and receives data from the registered

publishers, the Monitors, and the Sinks.
• Grafana is a daemon that runs on a specific host in the cluster and serves pre-built dashboards for visualizing

metrics collected in the Metrics Collector.

This conceptual diagram shows how the components of AMS work together to collect metrics and make those metrics
available to Ambari.

Access Grafana
Use the Grafana user interface to view metrics visualizations.

Procedure

1. In Ambari Web, browse to Services > Ambari Metrics > Summary.

2. In Quick Links, click Grafana.
A read-only version of the Grafana interface opens in a new tab in your browser.

4

using ambari core services Using Ambari Core Services

What to do next
In the Grafana UI, click a link in the Dashboards list, or click the Home link.
Related Information
http://grafana.org/

View Grafana dashboards
Use Dashboards on the Grafana home page to access AMS, Ambari server, Druid and HBase metrics.

About this task
To view specific metrics included in the list:

Procedure

1. In Grafana, browse to Dashboards.

2. On Dashboards click a dashboard name.

3. To see more available dashboards, click the Home list.

5

http://grafana.org/

using ambari core services Using Ambari Core Services

4. Scroll down to view all available dashboards.

5. From the list on Home, click a dashboard name..
For example, click System - Servers.
The System - Servers dashboard opens.

6

using ambari core services Using Ambari Core Services

View selected metrics in a Grafana dashboard
Use each Grafana dashboard to visualize multiple metrics

Procedure

• On a dashboard, expand one or more rows to view detailed metrics.
For example, in the System - Servers dashboard, click System Load Average - 1 Minute.
The row expands to display a chart that shows metrics information. This example shows the System Load
Average - 1 Minute and the System Load Average - 15 Minute rows expanded. Other rows in the System-Servers
dashboard remain collapsed.

7

using ambari core services Using Ambari Core Services

View metrics for selected hosts
Use Hosts to limit the number of hosts for which Grafana dispalys metrics information.

About this task
Grafana shows metrics for all hosts in your cluster by default. You can limit the set of hosts for which metrics display
to one or more, by selecting them from the Hosts menu.

Procedure

1. On Grafana Home, expand Hosts.

2. In Hosts. select one or more host names.
A check mark appears next to selected host names.

8

using ambari core services Using Ambari Core Services

Results
Selections in the Hosts menu apply to all metrics in the current dashboard. Grafana refreshes the current dashboards
when you select a new set of hosts.

Grafana dashboards reference
Ambari Metrics System includes Grafana with pre-built dashboards for advanced visualization of cluster metrics.

AMS HBase dashboards
AMS HBase Grafana dashboards track the same metrics as the regular HBase dashboard, but for the AMS-owned
instance.

AMS HBase refers to the HBase instance managed by Ambari Metrics Service independently. It does not have any
connection with the cluster HBase service.

The following Grafana dashboards are available for AMS HBase:

AMS HBase Home
The AMS HBase Home dashboards display basic statistics about an HBase cluster.

These dashboards provide insight to the overall status for the HBase cluster.

Table 1: AMS HBase Home metrics descriptions

Row Metrics Description

Num RegionServers Total number of RegionServers in the cluster.

Num Dead RegionServers Total number of RegionServers that are dead in the cluster.

Num Regions Total number of regions in the cluster.

REGIONSERVERS /
REGIONS

Avg Num Regions per RegionServer Average number of regions per RegionServer.

Num Regions / Stores - Total Total number of regions and stores (column families) in the cluster.NUM REGIONS/
STORES Store File Size / Count - Total Total data file size and number of store files.

Num Requests - Total Total number of requests (read, write and RPCs) in the cluster.
NUM REQUESTS

Num Request - Breakdown - Total Total number of get,put,mutate,etc requests in the cluster.

RegionServer Memory - Average Average used, max or committed on-heap and offheap memory for
RegionServers.REGIONSERVER

MEMORY RegionServer Offheap Memory - Average Average used, free or committed on-heap and offheap memory for
RegionServers.

Memstore - BlockCache - Average Average blockcache and memstore sizes for RegionServers.MEMORY -
MEMSTORE
BLOCKCACHE

Num Blocks in BlockCache - Total Total number of (hfile) blocks in the blockcaches across all
RegionServers.

BLOCKCACHE
BlockCache Hit/Miss/s Total Total number of blockcache hits misses and evictions across all

RegionServers.

9

using ambari core services Using Ambari Core Services

Row Metrics Description

BlockCache Hit Percent - Average Average blockcache hit percentage across all RegionServers.

Get Latencies - Average Average min, median, max, 75th, 95th, 99th percentile latencies for
Get operation across all RegionServers.OPERATION

LATENCIES - GET/
MUTATE Mutate Latencies - Average Average min, median, max, 75th, 95th, 99th percentile latencies for

Mutate operation across all RegionServers.

Delete Latencies - Average Average min, median, max, 75th, 95th, 99th percentile latencies for
Delete operation across all RegionServers.

OPERATION
LATENCIES
- DELETE/
INCREMENT

Increment Latencies - Average Average min, median, max, 75th, 95th, 99th percentile latencies for
Increment operation across all RegionServers.

Append Latencies - Average Average min, median, max, 75th, 95th, 99th percentile latencies for
Append operation across all RegionServers.OPERATION

LATENCIES -
APPEND/REPLAY Replay Latencies - Average Average min, median, max, 75th, 95th, 99th percentile latencies for

Replay operation across all RegionServers.

RegionServer RPC -Average Average number of RPCs, active handler threads and open connections
across all RegionServers.REGIONSERVER

RPC RegionServer RPC Queues - Average Average number of calls in different RPC scheduling queues and the
size of all requests in the RPC queue across all RegionServers.

REGIONSERVER
RPC

RegionServer RPC Throughput - Average Average sent and received bytes from the RPC across all
RegionServers.

AMS HBase RegionServers
The AMS HBase RegionServers dashboards display metrics for RegionServers in the monitored HBase cluster,
including some performance-related data.

These dashboards help you view basic I/O data and compare load among RegionServers.

Table 2: AMS HBase RegionServers metrics descritptions

Row Metrics Description

NUM REGIONS Num Regions Number of regions in the RegionServer.

Store File Size Total size of the store files (data files) in the RegionServer.
STORE FILES

Store File Count Total number of store files in the RegionServer.

Num Total Requests /s Total number of requests (both read and write) per second in the
RegionServer.

Num Write Requests /s Total number of write requests per second in the RegionServer.
NUM REQUESTS

Num Read Requests /s Total number of read requests per second in the RegionServer.

Num Get Requests /s Total number of Get requests per second in the RegionServer.NUM REQUESTS -
GET / SCAN Num Scan Next Requests /s Total number of Scan requests per second in the RegionServer.

Num Mutate Requests - /s Total number of Mutate requests per second in the RegionServer.NUM REQUESTS -
MUTATE / DELETE Num Delete Requests /s Total number of Delete requests per second in the RegionServer.

Num Append Requests /s Total number of Append requests per second in the RegionServer.

Num Increment Requests /s Total number of Increment requests per second in the RegionServer.
NUM REQUESTS
- APPEND /
INCREMENT

Num Replay Requests /s Total number of Replay requests per second in the RegionServer.

RegionServer Memory Used Heap Memory used by the RegionServer.
MEMORY

RegionServer Offheap Memory Used Offheap Memory used by the RegionServer.

MEMSTORE Memstore Size Total Memstore memory size of the RegionServer.

10

using ambari core services Using Ambari Core Services

Row Metrics Description

BlockCache - Size Total BlockCache size of the RegionServer.

BlockCache - Free Size Total free space in the BlockCache of the RegionServer.
BLOCKCACHE -
OVERVIEW

Num Blocks in Cache Total number of hfile blocks in the BlockCache of the RegionServer.

Num BlockCache Hits /s Number of BlockCache hits per second in the RegionServer.

Num BlockCache Misses /s Number of BlockCache misses per second in the RegionServer.

Num BlockCache Evictions /s Number of BlockCache evictions per second in the RegionServer.

BlockCache Caching Hit Percent Percentage of BlockCache hits per second for requests that requested
cache blocks in the RegionServer.

BLOCKCACHE -
HITS/MISSES

BlockCache Hit Percent Percentage of BlockCache hits per second in the RegionServer.

Get Latencies - Mean Mean latency for Get operation in the RegionServer.

Get Latencies - Median Median latency for Get operation in the RegionServer.

Get Latencies - 75th Percentile 75th percentile latency for Get operation in the RegionServer

Get Latencies - 95th Percentile 95th percentile latency for Get operation in the RegionServer.

Get Latencies - 99th Percentile 99th percentile latency for Get operation in the RegionServer.

OPERATION
LATENCIES - GET

Get Latencies - Max Max latency for Get operation in the RegionServer.

Scan Next Latencies - Mean Mean latency for Scan operation in the RegionServer.

Scan Next Latencies - Median Median latency for Scan operation in the RegionServer.

Scan Next Latencies - 75th Percentile 75th percentile latency for Scan operation in the RegionServer.

Scan Next Latencies - 95th Percentile 95th percentile latency for Scan operation in the RegionServer.

Scan Next Latencies - 99th Percentile 99th percentile latency for Scan operation in the RegionServer.

OPERATION
LATENCIES - SCAN
NEXT

Scan Next Latencies - Max Max latency for Scan operation in the RegionServer.

Mutate Latencies - Mean Mean latency for Mutate operation in the RegionServer.

Mutate Latencies - Median Median latency for Mutate operation in the RegionServer.

Mutate Latencies - 75th Percentile 75th percentile latency for Mutate operation in the RegionServer.

Mutate Latencies - 95th Percentile 95th percentile latency for Mutate operation in the RegionServer.

Mutate Latencies - 99th Percentile 99th percentile latency for Mutate operation in the RegionServer.

OPERATION
LATENCIES -
MUTATE

Mutate Latencies - Max Max latency for Mutate operation in the RegionServer.

Delete Latencies - Mean Mean latency for Delete operation in the RegionServer.

Delete Latencies - Median Median latency for Delete operation in the RegionServer.

Delete Latencies - 75th Percentile 75th percentile latency for Delete operation in the RegionServer.

Delete Latencies - 95th Percentile 95th percentile latency for Delete operation in the RegionServer.

Delete Latencies - 99th Percentile 99th percentile latency for Delete operation in the RegionServer.

OPERATION
LATENCIES -
DELETE

Delete Latencies - Max Max latency for Delete operation in the RegionServer.

Increment Latencies - Mean Mean latency for Increment operation in the RegionServer.

Increment Latencies - Median Median latency for Increment operation in the RegionServer.

Increment Latencies - 75th Percentile 75th percentile latency for Increment operation in the RegionServer.

Increment Latencies - 95th Percentile 95th percentile latency for Increment operation in the RegionServer.

Increment Latencies - 99th Percentile 99th percentile latency for Increment operation in the RegionServer.

OPERATION
LATENCIES -
INCREMENT

Increment Latencies - Max Max latency for Increment operation in the RegionServer.

11

using ambari core services Using Ambari Core Services

Row Metrics Description

Append Latencies - Mean Mean latency for Append operation in the RegionServer.

Append Latencies - Median Median latency for Append operation in the RegionServer.

Append Latencies - 75th Percentile 75th percentile latency for Append operation in the RegionServer.

Append Latencies - 95th Percentile 95th percentile latency for Append operation in the RegionServer.

Append Latencies - 99th Percentile 99th percentile latency for Append operation in the RegionServer.

OPERATION
LATENCIES -
APPEND

Append Latencies - Max Max latency for Append operation in the RegionServer.

Replay Latencies - Mean Mean latency for Replay operation in the RegionServer.

Replay Latencies - Median Median latency for Replay operation in the RegionServer.

Replay Latencies - 75th Percentile 75th percentile latency for Replay operation in the RegionServer.

Replay Latencies - 95th Percentile 95th percentile latency for Replay operation in the RegionServer.

Replay Latencies - 99th Percentile 99th percentile latency for Replay operation in the RegionServer.

OPERATION
LATENCIES -
REPLAY

Replay Latencies - Max Max latency for Replay operation in the RegionServer.

Num RPC /s Number of RPCs per second in the RegionServer.

Num Active Handler Threads Number of active RPC handler threads (to process requests) in the
RegionServer.

RPC - OVERVIEW

Num Connections Number of connections to the RegionServer.

Num RPC Calls in General Queue Number of RPC calls in the general processing queue in the
RegionServer.

Num RPC Calls in Priority Queue Number of RPC calls in the high priority (for system tables) processing
queue in the RegionServer.

Num RPC Calls in Replication Queue Number of RPC calls in the replication processing queue in the
RegionServer.

RPC - QUEUES

RPC - Total Call Queue Size Total data size of all RPC calls in the RPC queues in the RegionServer.

RPC - Call Queued Time - Mean Mean latency for RPC calls to stay in the RPC queue in the
RegionServer.

RPC - Call Queued Time - Median Median latency for RPC calls to stay in the RPC queue in the
RegionServer.

RPC - Call Queued Time - 75th Percentile 75th percentile latency for RPC calls to stay in the RPC queue in the
RegionServer.

RPC - Call Queued Time - 95th Percentile 95th percentile latency for RPC calls to stay in the RPC queue in the
RegionServer.

RPC - Call Queued Time - 99th Percentile 99th percentile latency for RPC calls to stay in the RPC queue in the
RegionServer.

RPC - CALL
QUEUED TIMES

RPC - Call Queued Time - Max Max latency for RPC calls to stay in the RPC queue in the
RegionServer.

RPC - Call Process Time - Mean Mean latency for RPC calls to be processed in the RegionServer.

RPC - Call Process Time - Median Median latency for RPC calls to be processed in the RegionServer.

RPC - Call Process Time - 75th Percentile 75th percentile latency for RPC calls to be processed in the
RegionServer.

RPC - Call Process Time - 95th Percentile 95th percentile latency for RPC calls to be processed in the
RegionServer.

RPC - Call Process Time - 99th Percentile 99th percentile latency for RPC calls to be processed in the
RegionServer.

RPC - CALL
PROCESS TIMES

RPC - Call Process Time - Max Max latency for RPC calls to be processed in the RegionServer.

12

using ambari core services Using Ambari Core Services

Row Metrics Description

RPC - Received bytes /s Received bytes from the RPC in the RegionServer.RPC -
THROUGHPUT RPC - Sent bytes /s Sent bytes from the RPC in the RegionServer.

Num WAL - Files Number of Write-Ahead-Log files in the RegionServer.
WAL - FILES

Total WAL File Size Total files sized of Write-Ahead-Logs in the RegionServer.

WAL - Num Appends /s Number of append operations per second to the filesystem in the
RegionServer.WAL -

THROUGHPUT WAL - Num Sync /s Number of sync operations per second to the filesystem in the
RegionServer.

WAL - Sync Latencies - Mean Mean latency for Write-Ahead-Log sync operation to the filesystem in
the RegionServer.

WAL - Sync Latencies - Median Median latency for Write-Ahead-Log sync operation to the filesystem
in the RegionServer.

WAL - Sync Latencies - 75th Percentile 75th percentile latency for Write-Ahead-Log sync operation to the
filesystem in the RegionServer.

WAL - Sync Latencies - 95th Percentile 95th percentile latency for Write-Ahead-Log sync operation to the
filesystem in the RegionServer.

WAL - Sync Latencies - 99th Percentile 99th percentile latency for Write-Ahead-Log sync operation to the
filesystem in the RegionServer.

WAL - SYNC
LATENCIES

WAL - Sync Latencies - Max Max latency for Write-Ahead-Log sync operation to the filesystem in
the RegionServer.

WAL - Append Latencies - Mean Mean latency for Write-Ahead-Log append operation to the filesystem
in the RegionServer.

WAL - Append Latencies - Median Median latency for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - Append Latencies - 75th Percentile 95th percentile latency for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - Append Latencies - 95th Percentile 95th percentile latency for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - Append Latencies - 99th Percentile 99th percentile latency for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - APPEND
LATENCIES

WAL - Append Latencies - Max Max latency for Write-Ahead-Log append operation to the filesystem
in the RegionServer.

WAL - Append Sizes - Mean Mean data size for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - Append Sizes - Median Median data size for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - Append Sizes - 75th Percentile 75th percentile data size for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - Append Sizes - 95th Percentile 95th percentile data size for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - Append Sizes - 99th Percentile 99th percentile data size for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - APPEND
SIZES

WAL - Append Sizes - Max Max data size for Write-Ahead-Log append operation to the filesystem
in the RegionServer.

WAL Num Slow Append /s Number of append operations per second to the filesystem that took
more than 1 second in the RegionServer.SLOW

OPERATIONS Num Slow Gets /s Number of Get requests per second that took more than 1 second in the
RegionServer.

13

using ambari core services Using Ambari Core Services

Row Metrics Description

Num Slow Puts /s Number of Put requests per second that took more than 1 second in the
RegionServer.

Num Slow Deletes /s Number of Delete requests per second that took more than 1 second in
the RegionServer.

Flush Queue Length Number of Flush operations waiting to be processed in the
RegionServer. A higher number indicates flush operations being slow.

Compaction Queue Length Number of Compaction operations waiting to be processed in the
RegionServer. A higher number indicates compaction operations being
slow.

FLUSH/
COMPACTION
QUEUES

Split Queue Length Number of Region Split operations waiting to be processed in the
RegionServer. A higher number indicates split operations being slow.

GC Count /s Number of Java Garbage Collections per second.

GC Count ParNew /s Number of Java ParNew (YoungGen) Garbage Collections per second.JVM - GC COUNTS

GC Count CMS /s Number of Java CMS Garbage Collections per second.

GC Times /s Total time spend in Java Garbage Collections per second.

GC Times ParNew /s Total time spend in Java ParNew(YoungGen) Garbage Collections per
second.

JVM - GC TIMES

GC Times CMS /s Total time spend in Java CMS Garbage Collections per second.

LOCALITY
Percent Files Local Percentage of files served from the local DataNode for the

RegionServer.

AMS HBase Misc
The AMS HBase Misc dashboards display miscellaneous metrics related to the HBase cluster.

You can use these metrics for tasks like debugging authentication and authorization issues and exceptions raised by
RegionServers.

Table 3: AMS HBase Misc metrics descriptions

Row Metrics Description

Master - Regions in Transition Number of regions in transition in the cluster.

Master - Regions in Transition Longer Than
Threshold Time

Number of regions in transition that are in transition state for longer
than 1 minute in the cluster.

REGIONS IN
TRANSITION

Regions in Transition Oldest Age Maximum time that a region stayed in transition state.

Master Num Threads - Runnable Number of threads in the Master.NUM THREADS -
RUNNABLE RegionServer Num Threads - Runnable Number of threads in the RegionServer.

Master Num Threads - Blocked Number of threads in the Blocked State in the Master.NUM THREADS -
BLOCKED RegionServer Num Threads - Blocked Number of threads in the Blocked State in the RegionServer.

Master Num Threads - Waiting Number of threads in the Waiting State in the Master.NUM THREADS -
WAITING RegionServer Num Threads - Waiting Number of threads in the Waiting State in the RegionServer.

Master Num Threads - Timed Waiting Number of threads in the Timed-Waiting State in the Master.NUM THREADS -
TIMED WAITING RegionServer Num Threads - Timed Waiting Number of threads in the Timed-Waiting State in the RegionServer.

Master Num Threads - New Number of threads in the New State in the Master.NUM THREADS -
NEW RegionServer Num Threads - New Number of threads in the New State in the RegionServer.

Master Num Threads - Terminated Number of threads in the Terminated State in the Master.NUM THREADS -
TERMINATED RegionServer Num Threads - Terminated Number of threads in the Terminated State in the RegionServer.

14

using ambari core services Using Ambari Core Services

Row Metrics Description

RegionServer RPC Authentication Successes /
s

Number of RPC successful authentications per second in the
RegionServer.RPC

AUTHENTICATION
RegionServer RPC Authentication Failures /s Number of RPC failed authentications per second in the RegionServer.

RegionServer RPC Authorization Successes /s Number of RPC successful autorizations per second in the
RegionServer.RPC Authorization

RegionServer RPC Authorization Failures /s Number of RPC failed autorizations per second in the RegionServer.

Master Exceptions /s Number of exceptions in the Master.
EXCEPTIONS

RegionServer Exceptions /s Number of exceptions in the RegionServer.

Ambari dashboards
The following Grafana dashboards are available for Ambari:

Ambari Server database
Metrics that show operating status for the Ambari server database.

Table 4: Ambari Server database metrics descriptions

Row Metrics Description

Total Read All Query Counter (Rate) Total ReadAllQuery operations performed.TOTAL READ ALL
QUERY Total Read All Query Timer (Rate) Total time spent on ReadAllQuery.

Total Cache Hits (Rate) Total cache hits on Ambari Server with respect to EclipseLink cache.
TOTAL CACHE
HITS & MISSES Total Cache Misses (Rate) Total cache misses on Ambari Server with respect to EclipseLink

cache.

Query Stages Timings Average time spent on every query sub stage by Ambari Server
QUERY

Query Types Avg. Timings Average time spent on every query type by Ambari Server.

Counter.ReadAllQuery.HostRoleCommandEntity
(Rate)

Rate (num operations per second) in which ReadAllQuery operation on
HostRoleCommandEntity is performed.

Timer.ReadAllQuery.HostRoleCommandEntity
(Rate)

Rate in which ReadAllQuery operation on HostRoleCommandEntity is
performed.

HOST ROLE
COMMAND
ENTITY

ReadAllQuery.HostRoleCommandEntity Average time taken for a ReadAllQuery operation on
HostRoleCommandEntity (Timer / Counter).

Ambari Server JVM
Metrics to see status for the Ambari Server Java virtual machine.

Table 5: Ambari Server JVM metrics descriptions

Row Metrics Description

Heap Usage Used, max or committed on-heap memory for Ambari Server.JVM - MEMORY
PRESSURE Off-Heap Usage Used, max or committed off-heap memory for Ambari Server.

GC Count Par new /s Number of Java ParNew (YoungGen) Garbage Collections per second.

GC Time Par new /s Total time spend in Java ParNew(YoungGen) Garbage Collections per
second.

GC Count CMS /s Number of Java Garbage Collections per second.

JVM GC COUNT

GC Time Par CMS /s Total time spend in Java CMS Garbage Collections per second.

JVM THREAD
COUNT

Thread Count Number of active, daemon, deadlock, blocked and runnable threads.

15

using ambari core services Using Ambari Core Services

Ambari Server top n
Metrics to see top performing users and operations for Ambari.

Table 6: Ambari Server top n metrics descriptions

Row Metrics Description

Top ReadAllQuery Counters Top N Ambari Server entities by number of ReadAllQuery operations
performed.

READ ALL QUERY
Top ReadAllQuery Timers Top N Ambari Server entities by time spent on ReadAllQuery

operations.

CACHE MISSES Cache Misses Top N Ambari Server entities by number of Cache Misses.

Druid Dashboards
The following Grafana dashboards are available for Druid:

Druid Home
Metrics that show operating status for Druid.

Table 7: Druid home metrics descriptions

Row Metrics Description

JVM Heap JVM Heap used by the Druid Broker Node.
DRUID BROKER

JVM GCM Time Time spent by the Druid Broker Node in JVM Garbage collection.

JVM Heap JVM Heap used by the Druid Historical Node.DRUID
HISTORICAL JVM GCM Time Time spent by the Druid Historical Node in JVM Garbage collection.

JVM Heap JVM Heap used by the Druid Coordinator Node.DRUID
COORDINATER JVM GCM Time Time spent by the Druid Coordinator Node in JVM Garbage collection.

JVM Heap JVM Heap used by the Druid Overlord Node.
DRUID OVERLORD

JVM GCM Time Time spent by the Druid Overlord Node in JVM Garbage collection.

JVM Heap JVM Heap used by the Druid Middlemanager Node.
DRUID
MIDDLEMANAGER JVM GCM Time Time spent by the Druid Middlemanager Node in JVM Garbage

collection.

Druid Ingestion
Metrics to see status for Druid data ingestion rates.

Table 8: Druid Ingestion metrics descriptions

Row Metrics Description

Ingested Events Number of events ingested on real time nodes.

Events Thrown Away Number of events rejected because they are outside the windowPeriod.
INGESTION
METRICS

Unparseable Events Number of events rejected because they did not parse.

Persisted Rows Number of Druid rows persisted on disk.

Average Persist Time Average time taken to persist intermediate segments to disk.
INTERMEDIATE
PERSISTS
METRICS

Intermediate Persist Count Number of times that intermediate segments were persisted.

Ave Segment Size Average size of added Druid segments.SEGMENT SIZE
METRICS Total Segment Size Total size of added Druid segments.

16

using ambari core services Using Ambari Core Services

Druid Query
Metrics to see status of Druid queries.

Table 9: Druid Query metrics descriptions

Row Metrics Description

Broker Query Time Average Time taken by Druid Broker node to process queries.

Historical Query Time Average time taken by Druid historical nodes to process queries.
QUERY TIME
METRICS

Realtime Query Time Average time taken by Druid real time nodes to process queries.

Historical Segment Scan Time Average time taken by Druid historical nodes to scan individual
segments.

Realtime Segment Scan Time Average time taken by Druid real time nodes to scan individual
segments.

Historical Query Wait Time Average time spent waiting for a segment to be scanned on historical
node.

Realtime Query Wait Time Average time spent waiting for a segment to be scanned on real time
node.

Pending Historical Segment Scans Average Number of pending segment scans on historical nodes.

SEGMENT SCAN
METRICS

Pending Realtime Segment Scans Average Number of pending segment scans on real time nodes.

HDFS Dashboards
The following Grafana dashboards are available for Hadoop Distributed File System (HDFS) components:

HDFS Home
The HDFS - Home dashboard displays metrics that show operating status for HDFS.

In a NameNode HA setup, metrics are collected from and displayed for both the active and the standby NameNode.

Table 10: HDFS Home metrics descriptions

Row Metrics Description

Number of Files Under Construction Number of HDFS files that are still being written.NUMBER OF
FILES UNDER
CONSTRUCTION
& RPC CLIENT
CONNECTIONS

PC Client Connections Number of open RPC connections from clients on NameNode(s).

Total File Operations Total number of operations on HDFS files, including file creation/
deletion/rename/truncation, directory/file/block information retrieval,
and snapshot related operations.

TOTAL FILE
OPERATIONS &
CAPACITY USED Capacity Used CapacityTotalGB shows total HDFS storage capacity, in GB.

CapacityUsedGB indicates total used HDFS storage capacity, in GB.

RPC Client Port Slow Calls Number of slow RPC requests on NameNode. A "slow" RPC request is
one that takes more time to complete than 99.7% of other requests.

RPC CLIENT PORT
SLOW CALLS
& HDFS TOTAL
LOAD

HDFS Total Load Total number of connections on all the DataNodes sending/receiving
data.

Add Block Time The average time (in ms) serving addBlock RPC request on
NameNode(s).ADD BLOCK

STATUS
Add Block Num Ops The rate of addBlock RPC requests on NameNode(s).

HDFS NameNodes
Metrics to see status for the NameNodes.

17

using ambari core services Using Ambari Core Services

Table 11: HDFS NameNodes metrics descriptions

Row Metrics Description

RPC Client Port Queue Time Average time that a RPC request (on the RPC port facing to the HDFS
clients) waits in the queue.RPC CLIENT

QUEUE TIME
RPC Client Port Queue Num Ops Total number of RPC requests in the client port queue.

RPC Client Port Processing Time Average RPC request processing time in milliseconds, on the client
port.RPC CLIENT PORT

PROCESSING TIME
RPC Client Port Processing Num Ops Total number of RPC active requests through the client port.

GC Count Shows the JVM garbage collection rate on the NameNode.GC COUNT & GC
TIME GC Time Shows the garbage collection time in milliseconds.

GC Count Par New The number of times young generation garbage collection happened.
GC PAR NEW

GC Time Par New Indicates the duration of young generation garbage collection.

GC Extra Sleep Time Indicates total garbage collection extra sleep time.GC EXTRA SLEEP
& WARNING
THRESHOLD
EXCEEDED

GC Warning Threshold Exceeded Count Indicates number of times that the garbage collection warning
threshold is exceeded.

RPC Client Port Queue Length Indicates the current length of the RPC call queue.RPC CLIENT
PORT QUEUE &
BACKOFF RPC Client Port Backoff Indicates number of client backoff requests.

RPC Service Port Queue Time Average time a RPC request waiting in the queue, in milliseconds.
These requests are on the RPC port facing to the HDFS services,
including DataNodes and the other NameNode.RPC SERVICE

PORT QUEUE &
NUM OPS RPC Service Port Queue Num Ops Total number of RPC requests waiting in the queue. These requests are

on the RPC port facing to the HDFS services, including DataNodes and
the other NameNode.

RPC Service Port Processing Time Average RPC request processing time in milliseconds, for the service
port.

RPC SERVICE
PORT PROCESSING
TIME & NUM OPS RPC Service Port Processing Num Ops Number of RPC requests processed for the service port.

RPC Service Port Call Queue Length The current length of the RPC call queue.RPC SERVICE
PORT CALL
QUEUE LENGTH &
SLOW CALLS

RPC Service Port Slow Calls The number of slow RPC requests, for the service port.

Transactions Since Last Edit Roll Total number of transactions since the last editlog segment.TRANSACTIONS
SINCE LAST EDIT
& CHECKPOINT Transactions Since Last Checkpoint Total number of transactions since the last editlog segment checkpoint.

Lock Queue Length Shows the length of the wait Queue for the FSNameSystemLock.LOCK QUEUE
LENGTH &
EXPIRED
HEARTBEATS

Expired Heartbeats Indicates the number of times expired heartbeats are detected on
NameNode.

Threads Blocked Indicates the number of threads in a BLOCKED state, which means
they are waiting for a lock.THREADS

BLOCKED /
WAITING Threads Waiting Indicates the number of threads in a WAITING state, which means

they are waiting for another thread to perform an action.

HDFS DataNodes
Metrics to see status for the DataNodes.

18

using ambari core services Using Ambari Core Services

Table 12: HDFS DataNodes metrics descriptions

Row Metrics Description

Blocks Written The rate or number of blocks written to a DataNode.BLOCKS
WRITTEN / READ Blocks Read The rate or number of blocks read from a DataNode.

Fsynch Time Average fsync time.FSYNCH TIME /
NUM OPS Fsynch Num Ops Total number of fsync operations.

Data Packet Blocked Time Indicates the average waiting time of transfering a data packet on a
DataNode.

DATA PACKETS
BLOCKED / NUM
OPS Data Packet Blocked Num Ops Indicates the number of data packets transferred on a DataNode.

Packet Transfer Time Average transfer time of sending data packets on a DataNode.PACKET
TRANSFER
BLOCKED / NUM
OPS

Packet Transfer Num Ops Indicates the number of data packets blocked on a DataNode.

Network Errors Rate of network errors on JVM.NETWORK
ERRORS / GC
COUNT GC Count Garbage collection DataNode hits.

GC Time JVM garbage collection time on a DataNode.GC TIME / GC TIME
PARNEW GC Time ParNew Young generation (ParNew) garbage collection time on a DataNode.

HDFS top n
Metrics that show top-level usage in HDFS.

Metrics that show

• Which users perform most HDFS operations on the cluster
• Which HDFS operations run most often on the cluster.

Table 13: HDFS top n metrics descriptions

Row Metrics Description

Top N Total Operations Count

1 min sliding window

Represents the metrics that show the total operation count per operation
for all users.

Shown for 1-minute interval.

Top N Total Operations Count

5 min sliding window

Represents the metrics that show the total operation count per operation
for all users.

Shown for 5-minute interval.

TOP N -
OPERATIONS
COUNT

Top N Total Operations Count

25 min sliding window

Represents the metrics that show the total operation count per operation
for all users.

Shown for 25-minute interval.

Top N Total Operations Count by User

1 min sliding window

Represents the metrics that show the total operation count per user.

Shown for 1-minute intervals.

Top N Total Operations Count by User

5 min sliding window

Represents the metrics that show the total operation count per user.

Shown for 5-minute intervals.

TOP N - TOTAL
OPERATIONS
COUNT BY USER

Top N Total Operations Count by User

25 min sliding window

Represents the metrics that show the total operation count per user.

Shown for 25-minute intervals.

19

using ambari core services Using Ambari Core Services

Row Metrics Description

TOP N - Operations by User

1 min sliding window

Represents the drilled down User x Op metrics against the TotalCount

Shown for 1-minute intervals.

TOP N - Operations by User

5 min sliding window

Represents the drilled down User x Op metrics against the TotalCount.

Shown for 5-minute intervals.

TOP N -
OPERATIONS BY
USER

TOP N - Operations by User

25 min sliding window

Represents the drilled down User x Op metrics against the TotalCount.

Shown for 25-minute intervals.

HDFS Users
Metrics to see status for HDFS users.

Table 14: HDFS Users metrics descriptions

Row Metrics Description

Namenode Rpc Caller
Volume

Namenode Rpc Caller Volume Number of RPC calls made by top(10) users.

Namenode Rpc Caller
Priority

Namenode Rpc Caller Priority Priority assignment for incoming calls from top(10) users.

YARN Dashboards
The following Grafana dashboards are available for YARN:

YARN Home
Metrics to see the overall status for the YARN cluster.

Table 15: YARN Home metrics descriptions

Metrics Description

Nodes The number of (active, unhealthy, lost) nodes in the cluster.

Apps The number of (running, pending, completed, failed) apps in the cluster.

Cluster Memory Available Total available memory in the cluster.

YARN Applications
Metrics to see status of Applications on the YARN Cluster.

Table 16: YARN Applications metrices descriptions

Metrics Description

Applications By Running
Time

Number of apps by running time in 4 categories by default (< 1 hour, 1 ~ 5 hours, 5 ~ 24 hours, > 24 hours).

Apps Running vs Pending The number of running apps vs the number of pending apps in the cluster.

Apps Submitted vs
Completed

The number of submitted apps vs the number of completed apps in the cluster.

Avg AM Launch Delay The average time taken from allocating an AM container to launching an AM container.

Avg AM Register Delay The average time taken from RM launches an AM container to AM registers back with RM.

YARN MR JobHistory Server
Metrics to see status of the Job History Server.

20

using ambari core services Using Ambari Core Services

Table 17: YARN MR JobHistory Server metrics descriptions

Row Metrics Description

GC Count Accumulated GC count over time.

GC Time Accumulated GC time over time.

Heap Mem Usage Current heap memory usage.
JVM METRICS

NonHeap Mem Usage Current non-heap memory usage.

YARN NodeManagers
Metrics to see status of YARN NodeManagers on the YARN cluster.

Table 18: YARN NodeManagers metrics descriptions

Row Metrics Description

Containers Running Current number of running containers.

Containers Failed Accumulated number of failed containers.

Containers Killed Accumulated number of killed containers.
NUM CONTAINERS

Containers Completed Accumulated number of completed containers.

Memory Available Available memory for allocating containers on this node.MEMORY
UTILIZATION Used Memory Used memory by containers on this node.

Disk Utilization for Good Log Dirs Disk utilization percentage across all good log directories.

Disk Utilization for Good Local Dirs Disk utilization percentage across all good local directories.

Bad Log Dirs Number of bad log directories.
DISK UTILIZATION

Bad Local Dirs Number of bad local directories.

AVE CONTAINER
LAUNCH DELAY

Ave Container Launch Delay Average time taken for a NM to launch a container.

RPC Avg Processing Time Average time for processing a RPC call.

RPC Avg Queue Time Average time for queuing a PRC call.

RPC Call Queue Length The length of the RPC call queue.
RPC METRICS

RPC Slow Calls Number of slow RPC calls.

Heap Mem Usage Current heap memory usage.

NonHeap Mem Usage Current non-heap memory usage.

GC Count Accumulated GC count over time.
JVM METRICS

GC Time Accumulated GC time over time.

LOG ERROR Number of ERROR logs.
LOG4J METRICS

LOG FATAL Number of FATAL logs.

YARN Queues
Metrics to see status of Queues on the YARN cluster.

Table 19: YARN Queues metrics descriptions

Row Metrics Description

Apps Runnning Current number of running applications.

Apps Pending Current number of pending applications.NUM APPS

Apps Completed Accumulated number of completed applications over time.

21

using ambari core services Using Ambari Core Services

Row Metrics Description

Apps Failed Accumulated number of failed applications over time.

Apps Killed Accumulated number of killed applications over time.

Apps Submitted Accumulated number of submitted applications over time.

Containers Running Current number of running containers.

Containers Pending Current number of pending containers.

Containers Reserved Current number of Reserved containers.

Total Containers Allocated Accumulated number of containers allocated over time.

Total Node Local Containers Allocated Accumulated number of node-local containers allocated over time.

Total Rack Local Containers Allocated Accumulated number of rack-local containers allocated over time.

NUM CONTAINERS

Total OffSwitch Containers Allocated Accumulated number of off-switch containers allocated over time.

Allocated Memory Current amount of memory allocated for containers.

Pending Memory Current amount of memory asked by applications for allocating
containers.

Available Memory Current amount of memory available for allocating containers.

Reserved Memory Current amount of memory reserved for containers.

MEMORY
UTILIZATION

Memory Used by AM Current amount of memory used by AM containers.

CONTAINER
ALLOCATION
DELAY

Ave AM Container Allocation Delay Average time taken to allocate an AM container since the AM
container is requested.

YARN ResourceManager
Metrics to see status of ResourceManagers on the YARN cluster.

Table 20: YARN ResourceManager metrics descriptions

Row Metrics Description

RPC Avg Processing / Queue Time Average time for processing/queuing a RPC call.

RPC Call Queue Length The length of the RPC call queue.RPC STATS

RPC Slow calls Number of slow RPC calls.

Heap Mem Usage Current heap memory usage.
MEMORY USAGE

NonHeap Mem Usage Current non-heap memory usage.

GC count Accumulated GC count over time.
GC STATS

GcTime Accumulated GC time over time.

LOG ERRORS Log Error / Fatal Number of ERROR/FATAL logs.

RPC Authorization Failures Number of authorization failures.AUTHORIZATION
&
AUTHENTICATION
FAILURES

RPC Authentication Failures Number of authentication failures.

YARN TimelineServer
Metrics to see the overall status for TimelineServer.

Table 21: YARN Timeline Server metrics descriptions

Row Metrics Description

DATA READS Timeline Entity Data Reads Accumulated number of read operations.

22

using ambari core services Using Ambari Core Services

Row Metrics Description

Timeline Entity Data Read time Average time for reading a timeline entity.

Timeline Entity Data Write Accumulated number of write operations.
DATA WRITES

Timeline Entity Data Write Time Average time for writing a timeline entity.

GC Count Accumulated GC count over time.

GC Time Accumulated GC time over time.

Heap Usage Current heap memory usage.
JVM METRICS

NonHeap Usage Current non-heap memory usage.

Hive Dashboards
The following Grafana dashboards are available for Hive:

Hive Home
Metrics that show the overall status for Hive service.

Table 22: Hive Home metrics descriptions

Row Metrics Description

DB count at startup Number of databases present at the last warehouse service startup time.

Table count at startup Number of tables present at the last warehouse service startup time.
WAREHOUSE SIZE
- AT A GLANCE

Partition count at startup Number of partitions present at the last warehouse service startup time.

#tables created (ongoing) Number of tables created since the last warehouse service startup.WAREHOUSE
SIZE - REALTIME
GROWTH #partitions created (ongoing) Number of partitions created since the last warehouse service startup.

HiveMetaStore Memory - Max Heap memory usage by Hive MetaStores. If applicable, indicates max
usage across multiple instances.

HiveServer2 Memory - Max Heap memory usage by HiveServer2. If applicable, indicates max
usage across multiple instances.

HiveMetaStore Offheap Memory - Max Non-heap memory usage by Hive MetaStores. If applicable, indicates
max usage across multiple instances.

HiveServer2 Offheap Memory - Max Non-heap memory usage by HiveServer2. If applicable, indicates max
across multiple instances.

HiveMetaStore app stop times (due to GC
stops)

Total time spent in application pauses caused by garbage collection
across Hive MetaStores.

MEMORY
PRESSURE

HiveServer2 app stop times (due to GC stops) Total time spent in application pauses caused by garbage collection
across HiveServer2.

API call times - Health Check roundtrip
(get_all_databases)

Time taken to process a low-cost call made by health checks to all
metastores.

METASTORE -
CALL TIMES API call times - Moderate size call

(get_partitions_by_names)
Time taken to process a moderate-cost call made by queries/exports/
etc to all metastores. Data for this metric may not be available in a less
active warehouse.

Hive HiveMetaStore
Metrics that show operating status for HiveMetaStore hosts.

Select a HiveMetaStore and a host to view relevant metrics.

23

using ambari core services Using Ambari Core Services

Table 23: Hive HiveMetaStore metrics descriptions

Row Metrics Description

API call times - Health Check roundtrip
(get_all_databases)

Time taken to process a low-cost call made by health checks to this
metastore.

API TIMES API call times - Moderate size call
(get_partitions_by_names)

Time taken to process a moderate-cost call made by queries/exports/
etc to this metastore. Data for this metric may not be available in a less
active warehouse.

App Stop times (due to GC) Time spent in application pauses caused by garbage collection.

Heap Usage Current heap memory usage.
MEMORY
PRESSURE

Off-Heap Usage Current non-heap memory usage.

Hive HiveServer2
Metrics that show operating status for HiveServer2 hosts.

Select a HiveServer2 and a host to view relevant metrics.

Table 24: Hive HiveServer2 metrics descriptions

Row Metrics Description

API call times - Health Check roundtrip
(get_all_databases)

Time taken to process a low-cost cal made by health checks to the
metastore embedded in this HiveServer2. Data for this metric may not
be available if HiverServer2 is not running in an embedded-metastore
mode.

API TIMES
API call times - Moderate size call
(get_partitions_by_names)

Time taken to process a moderate-cost call made by queries/exports/
etc to the metastore embedded in this HiveServer2. Data for this metric
may not be available in a less active warehouse, or if HiveServer2 is
not running in an embedded-metastore mode.

App Stop times (due to GC) Time spent in application pauses caused by garbage collection.

Heap Usage Current heap memory usage.
MEMORY
PRESSURE

Off-Heap Usage Current non-heap memory usage.

Active operation count Current number of active operations in HiveServer2 and their running
states.

THREAD STATES
Completed operation states Number of completed operations on HiveServer2 since the last restart.

Indicates whether they completed as expected or encountered errors.

Hive LLAP Dashboards
The following Grafana dashboards are available for Apache Hive LLAP.

The following Grafana dashboards are available for Apache Hive LLAP. The LLAP Heat map dashboard and the
LLAP Overview dashboard enable you to quickly see the hotspots among the LLAP daemons. If you find an issue
and want to navigate to more specific information for a specific system, use the LLAP Daemon dashboard.

Note that all Hive LLAP dashboards show the state of the cluster and are useful for looking at cluster information
from the previous hour or day. The dashboards do not show real-time results.

Hive LLAP Heatmap
This dashboard enables you to identify the hotspots in the cluster in terms of executors and cache.

The heat map dashboard shows all the nodes that are running LLAP daemons and includes a percentage summary
for available executors and cache. The values in the table are color coded based on threshold: if the threshold is more
than 50%, the color is green; between 20% and 50%, the color is yellow; and less than 20%, the color is red.

24

using ambari core services Using Ambari Core Services

Table 25: Hive LLAP Heatmap metrics descriptions

Row Metrics Description

Remaining Cache Capacity Shows the percentage of cache capacity remaining across the nodes.
For example, if the grid is green, the cache is being under utilized. If
the grid is red, there is high utilization of cache.

Remaining Cache Capacity Same as above (Remaining Cache Capacity), but shows the cache hit
ratio.

HEAT MAPS

Executor Free Slots Shows the percentage of executor free slots that are available on each
nodes.

Hive LLAP Overview
The overview dashboard shows the aggregated information across all of the clusters: for example, the total cache
memory from all the nodes.

This dashboard enables you to see that your cluster is configured and running correctly. For example, you might have
configured 10 nodes but you see only 8 nodes running. If you find an issue by viewing this dashboard, you can open
the LLAP Daemon dashboard to see which node is having the problem.

Table 26: HIVE LLAP Overview metrics descriptions

Row Metrics Description

Total Executor Threads Shows the total number of executors across all nodes.

Total Executor Memory Shows the total amount of memory for executors across all nodes.

Total Cache Memory Shows the total amount of memory for cache across all nodes.OVERVIEW

Total JVM Memory Shows the total amount of max Java Virtual Machine (JVM) memory
across all nodes.

Total Cache Usage Shows the total amount of cache usage (Total, Remaining, and Used)
across all nodes.

Average Cache Hit Rate As the data is released from the cache, the curve should increase. For
example, the first query should run at 0, the second at 80-90 seconds,
and then the third 10% faster. If, instead, it decreases, there might be a
problem in the cluster.

CACHE METRICS
ACROSS ALL
NODES

Average Cache Read Requests Shows how many requests are being made for the cache and how many
queries you are able to run that make use of the cache. If it says 0, for
example, your cache might not be working properly and this grid might
reveal a configuration issue.

Total Cache Usage Shows the total amount of cache usage (Total, Remaining, and Used)
across all nodes.

Average Cache Hit Rate As the data is released from the cache, the curve should increase. For
example, the first query should run at 0, the second at 80-90 seconds,
and then the third 10% faster. If, instead, it decreases, there might be a
problem in the cluster.

CACHE METRICS
ACROSS ALL
NODES

Average Cache Read Requests Shows how many requests are being made for the cache and how many
queries you are able to run that make use of the cache. If it says 0, for
example, your cache might not be working properly and this grid might
reveal a configuration issue.

25

using ambari core services Using Ambari Core Services

Row Metrics Description

Total Executor Requests Shows the total number of task requests that were handled, succeeded,
failed, killed, evicted and rejected across all nodes.

Handled: Total requests across all sub-groups

Succeeded: Total requests that were processed. For example, if you
have 8 core machines, the number of total executor requests would be 8

Failed: Did not complete successfully because, for example, you ran
out of memory

Rejected: If all task priorities are the same, but there are still not
enough slots to fulfill the request, the system will reject some tasks

Evicted: Lower priority requests are evicted if the slots are filled by
higher priority requests

Total Execution Slots Shows the total execution slots, the number of free or available slots,
and number of slots occupied in the wait queue across all nodes.

Ideally, the threads available (blue) result should be the same as the
threads that are occupied in the queue result.

Time to Kill Pre-empted Task (300s interval) Shows the time that it took to kill a query due to pre-emption in
percentile (50th, 90th, 99th) latencies in 300 second intervals.

Max Time To Kill Task (due to preemption) Shows the maximum time taken to kill a task due to pre-emption. This
grid and the one above show you if you are wasting a lot of time killing
queries. Time lost while a task is waiting to be killed is time lost in the
cluster. If your max time to kill is high, you might want to disable this
feature.

Pre-emption Time Lost (300s interval) Shows the time lost due to pre-emption in percentile (50th, 90th, 99th)
latencies in 300 second intervals.

EXECUTOR
METRICS ACROSS
ALL NODES

Max Time Lost In Cluster (due to pre-
emption)

Shows the maximum time lost due to pre-emption. If your max time to
kill is high, you might want to disable this feature.

Column Decoding Time (30s interval) Shows the percentile (50th, 90th, 99th) latencies for time it takes to
decode the column chunk (convert encoded column chunk to column
vector batches for processing) in 30 second intervals.

The cache comes from IO Elevator. It loads data from HDFS to the
cache, and then from the cache to the executor. This metric shows how
well the threads are performing and is useful to see that the threads are
running.

IO ELEVATOR
METRICS ACROSS
ALL NODES

Max Column Decoding Time Shows the maximum time taken to decode column chunk (convert
encoded column chunk to column vector batches for processing).

Average JVM Heap Usage Shows the average amount of Java Virtual Machine (JVM) heap
memory used across all nodes.

If the heap usage keeps increasing, you might run out of memory and
the task failure count would also increase.

Average JVM Non-Heap Usage Shows the average amount of JVM non-heap memory used across all
nodes.

Max GcTotalExtraSleepTime Shows the maximum garbage collection extra sleep time in
milliseconds across all nodes. Garbage collection extra sleep time
measures when the garbage collection monitoring is delayed (for
example, the thread does not wake up after 500 milliseconds).

Max GcTimeMillis Shows the total maximum GC time in milliseconds across all nodes.

JVM METRICS
ACROSS ALL
NODES

Total JVM Threads Shows the total number of JVM threads that are in a NEW,
RUNNABLE, WAITING, TIMED_WAITING, and TERMINATED
state across all nodes.

26

using ambari core services Using Ambari Core Services

Row Metrics Description

Total JVM Heap Used Shows the total amount of Java Virtual Machine (JVM) heap memory
used in the daemon.

If the heap usage keeps increasing, you might run out of memory and
the task failure count would also increase.

Total JVM Non-Heap Used Shows the total amount of JVM non-heap memory used in the LLAP
daemon.

If the non-heap memory is over-allocated, you might run out of
memory and the task failure count would also increase.

Max GcTotalExtraSleepTime Shows the maximum garbage collection extra sleep time in
milliseconds in the LLAP daemon. Garbage collection extra sleep
time measures when the garbage collection monitoring is delayed (for
example, the thread does not wake up after 500 milliseconds).

Max GcTimeMillis Shows the total maximum GC time in milliseconds in the LLAP
daemon.

Max JVM Threads Runnable Shows the maximum number of Java Virtual Machine (JVM) threads
that are in RUNNABLE state.

Max JVM Threads Blocked Shows the maximum number of JVM threads that are in BLOCKED
state. If you are seeing spikes in the threads blocked, you might have a
problem with your LLAP daemon.

Max JVM Threads Waiting Shows the maximum number of JVM threads that are in WAITING
state.

JVM METRICS

Max JVM Threads Timed Waiting Shows the maximum number of JVM threads that are in
TIMED_WAITING state.

Hive LLAP Daemon
Metrics that show operating status for Hive LLAP daemons.

Table 27: Hive LLAP Daemon metrics descriptions

Row Metrics Description

Total Requests Submitted Shows the total number of task requests handled by the daemon.

Total Requests Succeeded Shows the total number of successful task requests handled by the
daemon.

Total Requests Failed Shows the total number of failed task requests handled by the daemon.

Total Requests Killed Shows the total number of killed task requests handled by the daemon.

Total Requests Evicted From Wait Queue Shows the total number of task requests handled by the daemon
that were evicted from the wait queue. Tasks are evicted if all of the
executor threads are in use by higher priority tasks.

Total Requests Rejected Shows the total number of task requests handled by the daemon that
were rejected by the task executor service. Task are rejected if all of the
executor threads are in use and the wait queue is full of tasks that are
not eligible for eviction.

Available Execution Slots Shows the total number of free slots that are available for execution
including free executor threads and free slots in the wait queue.

95th Percentile Pre-emption Time Lost (300s
interval)

Shows the 95th percentile latencies for time lost due to pre-emption in
300 second intervals.

Max Pre-emption Time Lost Shows the maximum time lost due to pre-emption.

95th Percentile Time to Kill Pre-empted Task
(300s interval)

Shows the 95th percentile latencies for time taken to kill tasks due to
pre-emption in 300 second intervals.

EXECUTOR
METRICS

Max Time To Kill Task Pre-empted Task Shows the maximum time taken to kill a task due to pre-emption.

27

using ambari core services Using Ambari Core Services

Row Metrics Description

Total Cache Used Shows the total amount of cache usage (Total, Remaining, and Used)
in LLAP daemon cache.

Heap Usage Shows the amount of memory remaining in LLAP daemon cache.

Average Cache Hit Rate As the data is released from the cache, the curve should increase. For
example, the first query should run at 0, the second at 80-90 seconds,
and then the third 10% faster. If, instead, it decreases, there might be a
problem in the LLAP daemon.

CACHE METRICS

Total Cache Read Requests Shows the total number of read requests received by LLAP daemon
cache.

95th Percentile Column Decoding Time (30s
interval)

Shows the 95th percentile latencies for time it takes to decode the
column chunk (convert encoded column chunk to column vector
batches for processing) in 30 second intervals. The cache comes from
IO Elevator. It loads data from HDFS to the cache, and then from the
cache to the executor. This metric shows how well the threads are
performing and is useful to see that the threads are running.

THREAD STATES

Max Column Decoding Time Shows the maximum time taken to decode column chunk (convert
encoded column chunk to column vector batches for processing).

HBase Dashboards
The following Grafana dashboards are available for HBase:

Monitoring an HBase cluster is essential for maintaining a high-performance and stable system.

Important:

Ambari disables per-region, per-table, and per-user metrics for HBase by default. See Enable specific HBase
metrics if you want the Ambari Metrics System to display the more granular metrics of HBase system
performance on the individual region, table, or user level.

HBase Home
The HBase - Home dashboards display basic statistics about an HBase cluster.

These dashboards provide insight to the overall status for the HBase cluster.

Table 28: HBase Home metrics descriptions

Row Metrics Description

Num RegionServers Total number of RegionServers in the cluster.

Num Dead RegionServers Total number of RegionServers that are dead in the cluster.

Num Regions Total number of regions in the cluster.

REGIONSERVERS /
REGIONS

Avg Num Regions per RegionServer Average number of regions per RegionServer.

Num Regions / Stores - Total Total number of regions and stores (column families) in the cluster.NUM REGIONS/
STORES Store File Size / Count - Total Total data file size and number of store files.

Num Requests - Total Total number of requests (read, write and RPCs) in the cluster.
NUM REQUESTS

Num Request - Breakdown - Total Total number of get,put,mutate,etc requests in the cluster.

RegionServer Memory - Average Average used, max or committed on-heap and offheap memory for
RegionServers.REGIONSERVER

MEMORY RegionServer Offheap Memory - Average Average used, free or committed on-heap and offheap memory for
RegionServers.

Memstore - BlockCache - Average Average blockcache and memstore sizes for RegionServers.MEMORY -
MEMSTORE
BLOCKCACHE

Num Blocks in BlockCache - Total Total number of (hfile) blocks in the blockcaches across all
RegionServers.

28

using ambari core services Using Ambari Core Services

Row Metrics Description

BlockCache Hit/Miss/s Tota Total number of blockcache hits misses and evictions across all
RegionServers.BLOCKCACHE

BlockCache Hit Percent - Average Average blockcache hit percentage across all RegionServers.

Get Latencies - Average Average min, median, max, 75th, 95th, 99th percentile latencies for
Get operation across all RegionServers.OPERATION

LATENCIES - GET/
MUTATE Mutate Latencies - Average Average min, median, max, 75th, 95th, 99th percentile latencies for

Mutate operation across all RegionServers.

Delete Latencies - Average Average min, median, max, 75th, 95th, 99th percentile latencies for
Delete operation across all RegionServers.

OPERATION
LATENCIES
- DELETE/
INCREMENT

Increment Latencies - Average Average min, median, max, 75th, 95th, 99th percentile latencies for
Increment operation across all RegionServers.

Append Latencies - Average Average min, median, max, 75th, 95th, 99th percentile latencies for
Append operation across all RegionServers.OPERATION

LATENCIES -
APPEND/REPLAY Replay Latencies - Average Average min, median, max, 75th, 95th, 99th percentile latencies for

Replay operation across all RegionServers.

RegionServer RPC -Average Average number of RPCs, active handler threads and open connections
across all RegionServers.REGIONSERVER

RPC RegionServer RPC Queues - Average Average number of calls in different RPC scheduling queues and the
size of all requests in the RPC queue across all RegionServers.

REGIONSERVER
RPC

RegionServer RPC Throughput - Average Average sent and received bytes from the RPC across all
RegionServers.

HBase RegionServers
The HBase - RegionServers dashboards display metrics for RegionServers in the monitored HBase cluster, including
some performance-related data.

These dashboards help you view basic I/O data and compare load among RegionServers.

Table 29: HBAse RegionServes metrics descriptions

Row Metrics Description

NUM REGIONS Num Regions Number of regions in the RegionServer.

Store File Size Total size of the store files (data files) in the RegionServer.
STORE FILES

Store File Count Total number of store files in the RegionServer.

Num Total Requests /s Total number of requests (both read and write) per second in the
RegionServer.

Num Write Requests /s Total number of write requests per second in the RegionServer.
NUM REQUESTS

Num Read Requests /s Total number of read requests per second in the RegionServer.

Num Get Requests /s Total number of Get requests per second in the RegionServer.NUM REQUESTS -
GET / SCAN Num Scan Next Requests /s Total number of Scan requests per second in the RegionServer.

Num Mutate Requests - /s Total number of Mutate requests per second in the RegionServer.NUM REQUESTS -
MUTATE / DELETE Num Delete Requests /s Total number of Delete requests per second in the RegionServer.

Num Append Requests /s Total number of Append requests per second in the RegionServer.

Num Increment Requests /s Total number of Increment requests per second in the RegionServer.
NUM REQUESTS
- APPEND /
INCREMENT

Num Replay Requests /s Total number of Replay requests per second in the RegionServer.

RegionServer Memory Used Heap Memory used by the RegionServer.
MEMORY

RegionServer Offheap Memory Used Offheap Memory used by the RegionServer.

29

using ambari core services Using Ambari Core Services

Row Metrics Description

MEMSTORE Memstore Size Total Memstore memory size of the RegionServer.

BlockCache - Size Total BlockCache size of the RegionServer.

BlockCache - Free Size Total free space in the BlockCache of the RegionServer.
BLOCKCACHE -
OVERVIEW

Num Blocks in Cache Total number of hfile blocks in the BlockCache of the RegionServer.

Num BlockCache Hits /s Number of BlockCache hits per second in the RegionServer.

Num BlockCache Misses /s Number of BlockCache misses per second in the RegionServer.

Num BlockCache Evictions /s Number of BlockCache evictions per second in the RegionServer.

BlockCache Caching Hit Percent Percentage of BlockCache hits per second for requests that requested
cache blocks in the RegionServer.

BLOCKCACHE -
HITS/MISSES

BlockCache Hit Percent Percentage of BlockCache hits per second in the RegionServer.

Get Latencies - Mean Mean latency for Get operation in the RegionServer.

Get Latencies - Median Median latency for Get operation in the RegionServer.

Get Latencies - 75th Percentile 75th percentile latency for Get operation in the RegionServer

Get Latencies - 95th Percentile 95th percentile latency for Get operation in the RegionServer.

Get Latencies - 99th Percentile 99th percentile latency for Get operation in the RegionServer.

OPERATION
LATENCIES - GET

Get Latencies - Max Max latency for Get operation in the RegionServer.

Scan Next Latencies - Mean Mean latency for Scan operation in the RegionServer.

Scan Next Latencies - Median Median latency for Scan operation in the RegionServer.

Scan Next Latencies - 75th Percentile 75th percentile latency for Scan operation in the RegionServer.

Scan Next Latencies - 95th Percentile 95th percentile latency for Scan operation in the RegionServer.

Scan Next Latencies - 99th Percentile 99th percentile latency for Scan operation in the RegionServer.

OPERATION
LATENCIES - SCAN
NEXT

Scan Next Latencies - Max Max latency for Scan operation in the RegionServer.

Mutate Latencies - Mean Mean latency for Mutate operation in the RegionServer.

Mutate Latencies - Median Median latency for Mutate operation in the RegionServer.

Mutate Latencies - 75th Percentile 75th percentile latency for Mutate operation in the RegionServer.

Mutate Latencies - 95th Percentile 95th percentile latency for Mutate operation in the RegionServer.

Mutate Latencies - 99th Percentile 99th percentile latency for Mutate operation in the RegionServer.

OPERATION
LATENCIES -
MUTATE

Mutate Latencies - Max Max latency for Mutate operation in the RegionServer.

Delete Latencies - Mean Mean latency for Delete operation in the RegionServer.

Delete Latencies - Median Median latency for Delete operation in the RegionServer.

Delete Latencies - 75th Percentile 75th percentile latency for Delete operation in the RegionServer.

Delete Latencies - 95th Percentile 95th percentile latency for Delete operation in the RegionServer.

Delete Latencies - 99th Percentile 99th percentile latency for Delete operation in the RegionServer.

OPERATION
LATENCIES -
DELETE

Delete Latencies - Max Max latency for Delete operation in the RegionServer.

Increment Latencies - Mean Mean latency for Increment operation in the RegionServer.

Increment Latencies - Median Median latency for Increment operation in the RegionServer.

Increment Latencies - 75th Percentile 75th percentile latency for Increment operation in the RegionServer.

Increment Latencies - 95th Percentile 95th percentile latency for Increment operation in the RegionServer.

Increment Latencies - 99th Percentile 99th percentile latency for Increment operation in the RegionServer.

OPERATION
LATENCIES -
INCREMENT

Increment Latencies - Max Max latency for Increment operation in the RegionServer.

30

using ambari core services Using Ambari Core Services

Row Metrics Description

Append Latencies - Mean Mean latency for Append operation in the RegionServer.

Append Latencies - Median Median latency for Append operation in the RegionServer.

Append Latencies - 75th Percentile 75th percentile latency for Append operation in the RegionServer.

Append Latencies - 95th Percentile 95th percentile latency for Append operation in the RegionServer.

Append Latencies - 99th Percentile 99th percentile latency for Append operation in the RegionServer.

OPERATION
LATENCIES -
APPEND

Append Latencies - Max Max latency for Append operation in the RegionServer.

Replay Latencies - Mean Mean latency for Replay operation in the RegionServer.

Replay Latencies - Median Median latency for Replay operation in the RegionServer.

Replay Latencies - 75th Percentile 75th percentile latency for Replay operation in the RegionServer.

Replay Latencies - 95th Percentile 95th percentile latency for Replay operation in the RegionServer.

Replay Latencies - 99th Percentile 99th percentile latency for Replay operation in the RegionServer.

OPERATION
LATENCIES -
REPLAY

Replay Latencies - Max Max latency for Replay operation in the RegionServer.

Num RPC /s Number of RPCs per second in the RegionServer.

Num Active Handler Threads Number of active RPC handler threads (to process requests) in the
RegionServer.

RPC - OVERVIEW

Num Connections Number of connections to the RegionServer.

Num RPC Calls in General Queue Number of RPC calls in the general processing queue in the
RegionServer.

Num RPC Calls in Priority Queue Number of RPC calls in the high priority (for system tables) processing
queue in the RegionServer.

Num RPC Calls in Replication Queue Number of RPC calls in the replication processing queue in the
RegionServer.

RPC - QUEUES

RPC - Total Call Queue Size Total data size of all RPC calls in the RPC queues in the RegionServer.

RPC - Call Queued Time - Mean Mean latency for RPC calls to stay in the RPC queue in the
RegionServer.

RPC - Call Queued Time - Median Median latency for RPC calls to stay in the RPC queue in the
RegionServer.

RPC - Call Queued Time - 75th Percentile 75th percentile latency for RPC calls to stay in the RPC queue in the
RegionServer.

RPC - Call Queued Time - 95th Percentile 95th percentile latency for RPC calls to stay in the RPC queue in the
RegionServer.

RPC - Call Queued Time - 99th Percentile 99th percentile latency for RPC calls to stay in the RPC queue in the
RegionServer.

RPC - CALL
QUEUED TIMES

RPC - Call Queued Time - Max Max latency for RPC calls to stay in the RPC queue in the
RegionServer.

RPC - Call Process Time - Mean Mean latency for RPC calls to be processed in the RegionServer.

RPC - Call Process Time - Median Median latency for RPC calls to be processed in the RegionServer.

RPC - Call Process Time - 75th Percentile 75th percentile latency for RPC calls to be processed in the
RegionServer.

RPC - Call Process Time - 95th Percentile 95th percentile latency for RPC calls to be processed in the
RegionServer.

RPC - Call Process Time - 99th Percentile 99th percentile latency for RPC calls to be processed in the
RegionServer.

RPC - CALL
PROCESS TIMES

RPC - Call Process Time - Max Max latency for RPC calls to be processed in the RegionServer.

31

using ambari core services Using Ambari Core Services

Row Metrics Description

RPC - Received bytes /s Received bytes from the RPC in the RegionServer.RPC -
THROUGHPUT RPC - Sent bytes /s Sent bytes from the RPC in the RegionServer.

Num WAL - Files Number of Write-Ahead-Log files in the RegionServer.
WAL - FILES

Total WAL File Size Total files sized of Write-Ahead-Logs in the RegionServer.

WAL - Num Appends /s Number of append operations per second to the filesystem in the
RegionServer.WAL -

THROUGHPUT WAL - Num Sync /s Number of sync operations per second to the filesystem in the
RegionServer.

WAL - Sync Latencies - Mean Mean latency for Write-Ahead-Log sync operation to the filesystem in
the RegionServer.

WAL - Sync Latencies - Median Median latency for Write-Ahead-Log sync operation to the filesystem
in the RegionServer.

WAL - Sync Latencies - 75th Percentile 75th percentile latency for Write-Ahead-Log sync operation to the
filesystem in the RegionServer.

WAL - Sync Latencies - 95th Percentile 95th percentile latency for Write-Ahead-Log sync operation to the
filesystem in the RegionServer.

WAL - Sync Latencies - 99th Percentile 99th percentile latency for Write-Ahead-Log sync operation to the
filesystem in the RegionServer.

WAL - SYNC
LATENCIES

WAL - Sync Latencies - Max Max latency for Write-Ahead-Log sync operation to the filesystem in
the RegionServer.

WAL - Append Latencies - Mean Mean latency for Write-Ahead-Log append operation to the filesystem
in the RegionServer.

WAL - Append Latencies - Median Median latency for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - Append Latencies - 75th Percentile 95th percentile latency for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - Append Latencies - 95th Percentile 95th percentile latency for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - Append Latencies - 99th Percentile 99th percentile latency for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - APPEND
LATENCIES

WAL - Append Latencies - Max Max latency for Write-Ahead-Log append operation to the filesystem
in the RegionServer.

WAL - Append Sizes - Mean Mean data size for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - Append Sizes - Median Median data size for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - Append Sizes - 75th Percentile 75th percentile data size for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - Append Sizes - 95th Percentile 95th percentile data size for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - Append Sizes - 99th Percentile 99th percentile data size for Write-Ahead-Log append operation to the
filesystem in the RegionServer.

WAL - APPEND
SIZES

WAL - Append Sizes - Max Max data size for Write-Ahead-Log append operation to the filesystem
in the RegionServer.

WAL Num Slow Append /s Number of append operations per second to the filesystem that took
more than 1 second in the RegionServer.SLOW

OPERATIONS Num Slow Gets /s Number of Get requests per second that took more than 1 second in the
RegionServer.

32

using ambari core services Using Ambari Core Services

Row Metrics Description

Num Slow Puts /s Number of Put requests per second that took more than 1 second in the
RegionServer.

Num Slow Deletes /s Number of Delete requests per second that took more than 1 second in
the RegionServer.

Flush Queue Length Number of Flush operations waiting to be processed in the
RegionServer. A higher number indicates flush operations being slow.

Compaction Queue Length Number of Compaction operations waiting to be processed in the
RegionServer. A higher number indicates compaction operations being
slow.

FLUSH/
COMPACTION
QUEUES

Split Queue Length Number of Region Split operations waiting to be processed in the
RegionServer. A higher number indicates split operations being slow.

GC Count /s Number of Java Garbage Collections per second.

GC Count ParNew /s Number of Java ParNew (YoungGen) Garbage Collections per second.JVM - GC COUNTS

GC Count CMS /s Number of Java CMS Garbage Collections per second.

GC Times /s Total time spend in Java Garbage Collections per second.

GC Times ParNew /s Total time spend in Java ParNew(YoungGen) Garbage Collections per
second.

JVM - GC TIMES

GC Times CMS /s Total time spend in Java CMS Garbage Collections per second.

LOCALITY
Percent Files Local Percentage of files served from the local DataNode for the

RegionServer.

HBase Misc
The HBase - Misc dashboards display miscellaneous metrics related to the HBase cluster.

You can use these metrics for tasks like debugging authentication and authorization issues and exceptions raised by
RegionServers.

Table 30: HBase Misc metrics descriptions

Row Metrics Description

Master - Regions in Transition Number of regions in transition in the cluster.

Master - Regions in Transition Longer Than
Threshold Time

Number of regions in transition that are in transition state for longer
than 1 minute in the cluster.

REGIONS IN
TRANSITION

Regions in Transition Oldest Age Maximum time that a region stayed in transition state.

Master Num Threads - Runnable Number of threads in the Master.NUM THREADS -
RUNNABLE RegionServer Num Threads - Runnable Number of threads in the RegionServer.

Master Num Threads - Blocked Number of threads in the Blocked State in the Master.NUM THREADS -
BLOCKED RegionServer Num Threads - Blocked Number of threads in the Blocked State in the RegionServer.

Master Num Threads - Waiting Number of threads in the Waiting State in the Master.NUM THREADS -
WAITING RegionServer Num Threads - Waiting Number of threads in the Waiting State in the RegionServer.

Master Num Threads - Timed Waiting Number of threads in the Timed-Waiting State in the Master.NUM THREADS -
TIMED WAITING RegionServer Num Threads - Timed Waiting Number of threads in the Timed-Waiting State in the RegionServer.

Master Num Threads - New Number of threads in the New State in the Master.NUM THREADS -
NEW RegionServer Num Threads - New Number of threads in the New State in the RegionServer.

Master Num Threads - Terminated Number of threads in the Terminated State in the Master.NUM THREADS -
TERMINATED RegionServer Num Threads - Terminated Number of threads in the Terminated State in the RegionServer.

33

using ambari core services Using Ambari Core Services

Row Metrics Description

RegionServer RPC Authentication Successes /
s

Number of RPC successful authentications per second in the
RegionServer.RPC

AUTHENTICATION
RegionServer RPC Authentication Failures /s Number of RPC failed authentications per second in the RegionServer.

RegionServer RPC Authorization Successes /s Number of RPC successful autorizations per second in the
RegionServer.RPC Authorization

RegionServer RPC Authorization Failures /s Number of RPC failed autorizations per second in the RegionServer.

Master Exceptions /s Number of exceptions in the Master.
EXCEPTIONS

RegionServer Exceptions /s Number of exceptions in the RegionServer.

HBase Tables
HBase - Tables metrics reflect data on the table level.

The dashboards and data help you compare load distribution and resource use among tables in a cluster at different
times.

Table 31: HBase Tables metrics descriptions

Row Metrics Description

Num Regions Number of regions for the table(s).NUM REGIONS/
STORES Num Stores Number of stores for the table(s).

Table Size Total size of the data (store files and MemStore) for the table(s).

TABLE SIZE Average Region Size Average size of the region for the table(s). Average Region Size is
calculated from average of average region sizes reported by each
RegionServer (may not be the true average).

MEMSTORE SIZE MemStore Size Total MemStore size of the table(s).

Store File Size Total size of the store files (data files) for the table(s).
STORE FILES

Num Store Files Total number of store files for the table(s).

Max Store File Age Maximum age of store files for the table(s). As compactions rewrite
data, store files are also rewritten. Max Store File Age is calculated
from the maximum of all maximum store file ages reported by each
RegionServer.

Min Store File Age Minimum age of store files for the table(s). As compactions rewrite
data, store files are also rewritten. Min Store File Age is calculated
from the minimum of all minimum store file ages reported by each
RegionServer.

Average Store File Age Average age of store files for the table(s). As compactions rewrite data,
store files are also rewritten. Average Store File Age is calculated from
the average of average store file ages reported by each RegionServer.

STORE FILE AGE

Num Reference Files - Total on All Total number of reference files for the table(s).

NUM TOTAL
REQUESTS

Num Total Requests /s on Tables Total number of requests (both read and write) per second for the
table(s).

NUM READ
REQUESTS

Num Read Requests /s Total number of read requests per second for the table(s).

NUM WRITE
REQUESTS

Num Write Requests /s Total number of write requests per second for the table(s).

NUM FLUSHES Num Flushes /s Total number of flushes per second for the table(s).

Flushed MemStore Bytes Total number of flushed MemStore bytes for the table(s).
FLUSHED BYTES

Flushed Output Bytes Total number of flushed output bytes for the table(s).

34

using ambari core services Using Ambari Core Services

Row Metrics Description

Flush Time Mean Mean latency for Flush operation for the table(s).

Flush Time Median Median latency for Flush operation for the table(s).

Flush Time 95th Percentile 95th percentile latency for Flush operation for the table(s).

FLUSH TIME
HISTOGRAM

Flush Time Max Maximum latency for Flush operation for the table(s).

Flush MemStore Size Mean Mean size of the MemStore for Flush operation for the table(s).

Flush MemStore Size Median Median size of the MemStore for Flush operation for the table(s).

Flush Output Size 95th Percentile 95th percentile size of the MemStore for Flush operation for the
table(s).

FLUSH MEMSTORE
SIZE HISTOGRAM

Flush MemStore Size Max Max size of the MemStore for Flush operation for the table(s).

Flush Output Size Mean Mean size of the output file for Flush operation for the table(s).

Flush Output Size Median Median size of the output file for Flush operation for the table(s).

Flush Output Size 95th Percentile 95th percentile size of the output file for Flush operation for the
table(s).

FLUSH OUTPUT
SIZE HISTOGRAM

Flush Output Size Max Max size of the output file for Flush operation for the table(s).

HBase Users
The HBase - Users dashboards display metrics and detailed data on a per-user basis across the cluster.

You can click the second drop-down arrow in the upper-left corner to select a single user, a group of users, or all
users, and you can change your user selection at any time.

Table 32: HBase Users metrics descriptions

Row Metrics Description

Num Get Requests /s Total number of Get requests per second for the user(s).NUM REQUESTS -
GET/SCAN Num Scan Next Requests /s Total number of Scan requests per second for the user(s).

Num Mutate Requests /s Total number of Mutate requests per second for the user(s).NUM REQUESTS -
MUTATE/DELETE Num Delete Requests /s Total number of Delete requests per second for the user(s).

Num Append Requests /s Total number of Append requests per second for the user(s).NUM REQUESTS
- APPEND/
INCREMENT Num Increment Requests /s Total number of Increment requests per second for the user(s).

Kafka Dashboards
The following Grafana dashboards are available for Kafka:

Kafka Home
Metrics that show overall status for the Kafka cluster.

Table 33: Kafka Home metrics descriptions

Row Metrics Description

Bytes In & Bytes Out /sec Rate at which bytes are produced into the Kafka cluster and the rate at
which bytes are being consumed from the Kafka cluster.

BYTES IN & OUT /
MESSAGES IN

Messages In /sec Number of messages produced into the Kafka cluster.

Active Controller Count Number of active controllers in the Kafka cluster. This should always
equal one.

Replica MaxLag Shows the lag of each replica from the leader.

CONTROLLER/
LEADER COUNT &
REPLICA MAXLAG

Leader Count Number of partitions for which a particular host is the leader.

35

using ambari core services Using Ambari Core Services

Row Metrics Description

Under Replicated Partitions Indicates if any partitions in the cluster are under-replicated.UNDER
REPLICATED
PATRITIONS
& OFFLINE
PARTITONS
COUNT

Offline Partitions Count Indicates if any partitions are offline (which means that no leaders or
replicas are available for producing or consuming).

Producer Req /sec Rate at which producer requests are made to the Kafka cluster.PRODUCER &
CONSUMER
REQUESTS Consumer Req /sec Rate at which consumer requests are made from the Kafka cluster.

Leader Election Rate Rate at which leader election is happening in the Kafka cluster.LEADER
ELECTION AND
UNCLEAN LEADER
ELECTIONS

Unclean Leader Elections Indicates if there are any unclean leader elections. Unclean leader
election indicates that a replica which is not part of ISR is elected as a
leader.

IsrShrinksPerSec If the broker goes down, ISR shrinks. In such case, this metric indicates
if any of the partitions are not part of ISR.

ISR SHRINKS / ISR
EXPANDED

IsrExpandsPerSec Once the broker comes back up and catches up with the leader, this
metric indicates if any partitions rejoined ISR.

REPLICA FETCHER
MANAGER

ReplicaFetcherManager MaxLag The maximum lag in messages between the follower and leader
replicas.

Kafka Hosts
Metrics that show operating status for Kafka cluster on a per broker level.

Use the drop-down menus to customize your results:

• Kafka broker
• Host
• Whether to view the largest (top) or the smallest (bottom) values
• Number of values that you want to view
• Aggregator to use: average, max value, or the sum of values

Table 34: Kafka Hosts metrics descriptions

Row Metrics Description

Bytes In & Bytes Out /sec Rate at which bytes produced into the Kafka broker and rate at which
bytes are being consumed from the Kafka broker.

Messages In /sec Number of messages produced into the Kafka broker.

BYTES IN &
OUT / MESSAGES
IN / UNDER
REPLICATED
PARTITIONS Under Replicated Partitions Number of under-replicated partitions in the Kafka broker.

Producer Req /sec Rate at which producer requests are made to the Kafka broker.PRODUCER &
CONSUMER
REQUESTS Consumer Req /sec Rate at which consumer requests are made from the Kafka broker.

Replica Manager Partition Count Number of topic partitions being replicated for the Kafka broker.

Replica Manager Leader Count Number of topic partitions for which the Kafka broker is the leader.

REPLICA
MANAGER
PARTITION/
LEADER/FETCHER
MANAGER MAX
LAG

Replica Fetcher Manager MaxLag clientId
Replica

Shows the lag in replicating topic partitions.

IsrShrinks /sec Indicates if any replicas failed to be in ISR for the host.ISR SHRINKS / ISR
EXPANDS

IsrExpands /sec Indicates if any replica has caught up with leader and re-joined the ISR
for the host.

Kafka Topics
Metrics related to Kafka cluster on a per topic level.

Select a topic (by default, all topics are selected) to view the metrics for that topic.

36

using ambari core services Using Ambari Core Services

Table 35: Kafka Topics metrics descriptions

Row Metrics Description

MessagesInPerSec Rate at which messages are being produced into the topic.MESSAGES IN/OUT
& BYTES IN/OUT

MessagesOutPerSec Rate at which messages are being consumed from the topic.

TOTAL FETCH
REQUESTS

TotalFetchRequestsPerSec Number of consumer requests coming for the topic.

TOTAL PRODUCE
REQUESTS /SEC

TotalProduceRequestsPerSec Number of producer requests being sent to the topic.

FETCHER
LAG METRICS
CONSUMER LAG

FetcherLagMetrics ConsumnerLag Shows the replica fetcher lag for the topic.

Storm Dashboards
The following Grafana dashboards are available for Storm:

Storm Home
Metrics that show the operating status for Storm.

Table 36: Storm Home metrics descriptions

Row Metrics Description

Topologies Number of topologies in the cluster.

Supervisors Number of supervisors in the cluster.

Total Executors Total number of executors running for all topologies in the cluster.

Unnamed

Total Tasks Total number of tasks for all topologies in the cluster.

Free Slots Number of free slots for all supervisors in the cluster.

Used Slots Number of used slots for all supervisors in the cluster.

Unnamed

Total Slots Total number of slots for all supervisors in the cluster. Should be more
than 0.

Storm Topology
Metrics that show the overall operating status for Storm topologies.

Select a topology (by default, all topologies are selected) to view metrics for that topology.

Table 37: Storm Topology metrics descriptions

Row Metrics Description

All Tasks Input/Output Input Records is the number of input messages executed on all tasks.

Output Records is the number of messages emitted on all tasks.

All Tasks Acked Tuples Number of messages acked (completed) on all tasks.

RECORDS

All Tasks Failed Tuples Number of messages failed on all tasks.

All Spouts Latency Average latency on all spout tasks.LATENCY / QUEUE

All Tasks Queue Receive Queue Population is the total number of tuples waiting in the
receive queue.

Send Queue Population is the total number of tuples waiting in the send
queue.

MEMORY USAGE All workers memory usage on heap Used bytes on heap for all workers in topology.

37

using ambari core services Using Ambari Core Services

Row Metrics Description

All workers memory usage on non-heap Used bytes on non-heap for all workers in topology.

All workers GC count PSScavenge count is the number of occurrences for parallel scavenge
collector.

PSMarkSweep count is the number of occurrences for parallel
scavenge mark and sweep collector.

GC

All workers GC time PSScavenge timeMs is the sum of the time parallel scavenge collector
takes (in milliseconds).

PSMarkSweep timeMs is the sum of the time parallel scavenge mark
and sweep collector takes (in milliseconds).

Note that GC metrics are provided based on worker GC setting,
so these metrics are only available for default GC option for
worker.childopts. If you use another GC option for worker, you need to
copy the dashboard and update the metric name manually.

Storm Components
Metrics that show operating status for Storm topologies on a per component level.

Select a topology and a component to view related metrics.

Table 38: Storm components metrics descriptions

Row Metrics Description

Input/Output Input Records is the number of messages executed on the selected
component.

Output Records is the number of messages emitted on the selected
component.

Acked Tuples Number of messages acked (completed) on the selected component.

RECORDS

Failed Tuples Number of messages failed on the selected component.

Latency Complete Latency is the average complete latency on the select
component (for Spout).

Process Latency is the average process latency on the selected
component (for Bolt).

LATENCY / QUEUE

Queue Receive Queue Population is the total number of tuples waiting in
receive queues on the selected component.

Send Queue Population is the total number of tuples waiting in send
queues on the selected component.

System Dashboards
The following Grafana dashboards are available for System:

System Home
Metrics to see the overall status of the cluster.

Table 39: System Home metrics descriptions

Row Metrics Description

Logical CPU Count Per Server Average number of CPUs (including hyperthreading) aggregated for
selected hosts.

Total Memory Per Server Total system memory available per server aggregated for selected
hosts.

OVERVIEW
AVERAGES

Total Disk Space Per Server Total disk space per server aggregated for selected hosts.

38

using ambari core services Using Ambari Core Services

Row Metrics Description

Logical CPU Count Total Total Number of CPUs (including hyperthreading) aggregated for
selected hosts.

Total Memory Total system memory available per server aggregated for selected
hosts.

OVERVIEW -
TOTALS

Total Disk Space Total disk space per server aggregated for selected hosts.

CPU CPU Utilization -Average CPU utilization aggregated for selected hosts.

SYSTEM LOAD System Load - Average Load average (1 min, 5 min and 15 min) aggregated for selected hosts.

Memory - Average Average system memory utilization aggregated for selected hosts.
MEMORY

Memory - Total Total system memory available aggregated for selected hosts.

Disk Utilitzation - Average Average disk usage aggregated for selected hosts.DISK
UTILITZATION Disk Utilitzation - Total Total disk available for selected hosts.

Disk IO - Average

(upper chart)

Disk read/write counts (iops) co-related with bytes aggregated for
selected hosts.

Disk IO - Average

(lower chart)

Average Individual read/write statistics as MBps aggregated for
selected hosts.

DISK IO

Disk IO - Total Sum of read/write bytes/sec aggregated for selected hosts.

NETWORK IO Network IO - Average Average Network statistics as MBps aggregated for selected hosts.

Network IO - Total Sum of Network packets as MBps aggregated for selected hosts.NETWORK
PACKETS Network Packets -Average Average of Network packets as KBps aggregated for selected hosts.

Swap Space - Average Average swap space statistics aggregated for selected hosts.SWAP/NUM
PROCESSES Num Processes - Average Average number of processes aggregated for selected hosts.

Note:

• Average implies sum/count for values reported by all hosts in the cluster. Example: In a 30 second
window, if 98 out of 100 hosts reported 1 or more value, it is the SUM(Avg value from each host +
Interpolated value for 2 missing hosts)/100.

• Sum/Total implies the sum of all values in a timeslice (30 seconds) from all hosts in the cluster. The same
interpolation rule applies.

System Servers
Metrics to see the system status per host on the server.

Table 40: System Servers metrics descriptions

Row Metrics Description

CPU Utilization - User CPU utilization per user for selected hosts.CPU - USER/
SYSTEM CPU Utilization - System CPU utilization per system for selected hosts.

CPU Utilization - Nice CPU nice (Unix) time spent for selected hosts.
CPU - NICE/IDLE

CPU Utilization - Idle CPU idle time spent for selected hosts.

CPU Utilization - iowait CPU IO wait time for selected hosts.CPU - IOWAIT/
INTR CPU Utilization - Hardware Interrupt CPU IO interrupt execute time for selected hosts.

CPU Utilization - Software Interrupt CPU time spent processing soft irqs for selected hosts.
CPU - SOFTINTR/
STEAL CPU Utilization - Steal (VM) CPU time spent processing steal time (virtual cpu wait) for selected

hosts.

39

using ambari core services Using Ambari Core Services

Row Metrics Description

SYSTEM LOAD - 1
MINUTE

System Load Average - 1 Minute 1 minute load average for selected hosts.

SYSTEM LOAD - 5
MINUTE

System Load Average - 5 Minute 5 minute load average for selected hosts.

SYSTEM LOAD - 15
MINUTE

System Load Average - 15 Minute 15 minute load average for selected hosts.

Memory - Total Total memory in GB for selected hosts.MEMORY - TOTAL/
USED Memory - Used Used memory in GB for selected hosts.

Memory - Free Total free memory in GB for selected hosts.MEMORY - FREE/
CACHED Memory - Cached Total cached memory in GB for selected hosts.

Memory - Buffered Total buffered memory in GB for selected hosts.MEMORY -
BUFFERED/
SHARED Memory - Shared Total shared memory in GB for selected hosts.

Disk Used Disk space used in GB for selected hosts.DISK
UTILITZATION Disk Free Disk space available in GB for selected hosts.

Read Bytes IOPS as read MBps for selected hosts.
DISK IO

Write Bytes IOPS as write MBps for selected hosts.

Read Count IOPS as read count for selected hosts.
DISK IOPS

Write Count IOPS as write count for selected hosts.

Network Bytes Received Network utilization as byte/sec received for selected hosts.NETWORK IO

Network Bytes Sent Network utilization as byte/sec sent for selected hosts.

Network Packets Received Network utilization as packets received for selected hosts.NETWORK
PACKETS

Network Packets Sent Network utilization as packets sent for selected hosts.

Swap Space - Total Total swap space available for selected hosts.SWAP

Swap Space - Free Total free swap space for selected hosts.

Num Processes -Total Count of processes and total running processes for selected hosts.NUM PROCESSES

Num Processes - Runnable Count of processes and total running processes for selected hosts.

NiFi Dashboard
The following Grafana dashboard is available for NiFi:

NiFi Home
You can use the following metrics to assess the general health of your NiFi cluster.

For all metrics available in the NiFi-Home dashboard, the single value you see is the average of the information
submitted by each node in your NiFi cluster.

Table 41: NiFi Home metrics descriptions

Row Metrics Description

JVM Heap Usage Displays the amount of memory being used by the JVM process. For
NiFi, the default configuration is 512 MB.

JVM File Descriptor Usage Shows the number of connections to the operating system. You
can monitor this metric to ensure that your JVM file descriptors, or
connections, are opening and closing as tasks complete.

JVM INFO

JVM Uptime Displays how long a Java process has been running. You can use this
metric to monitor Java process longevity, and any unexpected restarts.

40

using ambari core services Using Ambari Core Services

Row Metrics Description

Active Threads NiFi has two user configurable thread pools:

• Maximum timer driven thread count (default 10)
• Maximum event driven thread count (default 5)

This metric displays the number of active threads from these two pools.

Thread Count Displays the total number of threads for the JVM process that is
running NiFi. This value is larger than the two pools above, because
NiFi uses more than just the timer and event driven threads.

THREAD INFO

Daemon Thread Count Displays the number of daemon threads that are running. A daemon
thread is a thread that does not prevent the JVM from exiting when the
program finishes, even if the thread is still running.

FlowFiles Received Displays the number of FlowFiles received into NiFi from an external
system in the last 5 minutes.

FlowFiles Sent Displays the number of FlowFiles sent from NiFi to an external system
in the last 5 minutes.

FLOWFILE INFO

FlowFiles Queued Displays the number of FlowFiles queued in a NiFi processor
connection.

Bytes Received Displays the number of bytes of FlowFile data received into NiFi from
an external system, in the last 5 minutes.

Bytes Sent Displays the number of bytes of FlowFile data sent from NiFi to an
external system, in the last 5 minutes.

BYTE INFO

Bytes Queued Displays the number of bytes of FlowFile data queued in a NiFi
processor connection.

Tuning performance for AMS
To get optimal performance from Ambari Metrics System, review the following Metrics Collector configuration
options:

Customize the AMS collector mode
You can change the mode of the metrics collector from the default, embedded mode to distributed mode.

About this task
Metrics Collector is built using Hadoop technologies such as Apache HBase, Apache Phoenix, and Apache Traffic
Server (ATS). The Collector can store metrics data on the local file system, referred to as embedded mode, or use
an external HDFS, referred to as distributed mode. By default, the Collector runs in embedded mode. In embedded
mode, the Collector captures and writes metrics to the local file system on the host where the Collector is running.

Important: When running in embedded mode, you should confirm that hbase.rootdir and hbase.tmp.dir
have adequately sized and lightly used partitions. Directory configurations in Ambari Metrics > Configs >
Advanced > ams-hbase-site are using a sufficiently-sized and not-heavily-utilized partition, such as: file:///
grid/0/var/lib/ambari-metrics-collector/hbase. You should also confirm that the TTL settings are appropriate.

When the Collector is configured for distributed mode, it writes metrics to HDFS, and the components run in
distributed processes, which helps to manage CPU and memory consumption. To switch the Metrics Collector from
embedded mode to distributed mode:

Procedure

1. In Ambari Web, browse to Services > Ambari Metrics > Configs.

2. Change the values of the following properties to the values shown in the following table:

41

using ambari core services Using Ambari Core Services

Table 42: AMS Config Properties

Configuration
Section

Property Description Value

General Metrics Service operation mode
(timeline.metrics.service.operation.mode)

Designates whether to run in
distributed or embedded mode.

distributed

Advanced ams-
hbase-site

hbase.cluster.distributed Indicates AMS will run in distributed
mode.

true

Advanced ams-
hbase-site

hbase.rootdir 1 The HDFS directory location where
metrics will be stored.

hdfs://$NAMENODE_FQDN:8020/
apps/ams/metrics

3. Using Ambari Web > Hosts > Components, restart the Metrics Collector.

If your cluster if configured for a highly available NameNode, set the hbase.rootdir value to use the HDFS name
service instead of the NameNode host name.

hdfs://hdfsnameservice/apps/ams/metrics

4. Optionally, you can migrate existing data from the local store to HDFS prior to switching to distributed mode:

a) Create an HDFS directory for the ams user.
su - hdfs -c 'hdfs dfs -mkdir -p /apps/ams/metrics'

b) Stop Metrics Collector.
c) Copy the metric data from the AMS local directory to an HDFS directory.

This is the value of hbase.rootdir in Advanced ams-hbase-site used when running in embedded mode.

For example:

su - hdfs -c 'hdfs dfs -copyFromLocal
/var/lib/ambari-metrics-collector/hbase/* /apps/ams/metrics'

su - hdfs -c 'hdfs dfs -copyFromLocal
/var/lib/ambari-metrics-collector/hbase/* /apps/ams/metrics'

su - hdfs -c 'hdfs dfs -chown -R ams:hadoop
/apps/ams/metrics'

d) Switch to distributed mode.
e) Restart the Metrics Collector.

What to do next
If you are working with Apache HBase cluster metrics and want to display the more granular metrics of HBase cluster
performance on the individual region, table, or user level, see .

Customize AMS TTL settings
Customize the configuration properties in Advanced ams-site to configure time-to-live (TTL) for aggregated metrics.

About this task
AMS enables you to configure time-to-live (TTL) for aggregated metrics by navigating to Ambari Metrics >
Configs > Advanced ams-site. Each property name is self explanatory and controls the amount of time to keep
metrics (in seconds) before they are purged. TTL values are set in seconds. For example, assume that you are running
a single-node sandbox and want to ensure that no values are stored for more than seven days, to reduce local disk
space consumption. In this case, you can set to 604800s (seven days) any property ending in .ttl that has a value
greater than 604800.

Before you begin
In Ambari Metrics > Configs > Advanced ams-site, reset TTL values for the following properties:

42

using ambari core services Using Ambari Core Services

• timeline.metrics.cluster.aggregator.daily.ttl, which controls the daily aggregation TTL and is set by default to two
years.

• timeline.metrics.cluster.aggregator.minute.ttl, , which controls minute -level aggregated metrics TTL.
• timeline.metrics.host.aggregator.ttl, which controls host-based precision metrics TTL.

If you are working in an environment prior to Apache Ambari 2.1.2, you should make these settings during
installation; otherwise, you must use the HBase shell by running the following command from the Collector host:

/usr/lib/ams-hbase/bin/hbase --config /etc/ams-hbase/conf shell

Procedure

• After you are connected, update each of the following tables with the TTL value hbase(main):000:0> alter
'METRIC_RECORD_DAILY', { NAME => '0', TTL => 604800}

Table 43: AMS TTL Mappings

Map This TTL Property To This HBase Table

timeline.metrics.cluster.aggregator.daily.ttl METRIC_AGGREGATE_DAILY

timeline.metrics.cluster.aggregator.hourly.ttl METRIC_AGGREGATE_HOURLY

timeline.metrics.cluster.aggregator.minute.ttl METRIC_AGGREGATE

timeline.metrics.host.aggregator.daily.ttl METRIC_RECORD_DAILY

timeline.metrics.host.aggregator.hourly.ttl METRIC_RECORD_HOURLY

timeline.metrics.host.aggregator.minute.ttl METRIC_RECORD_MINUTE

timeline.metrics.host.aggregator.ttl METRIC_RECORD

Customize AMS memory settings
AMS runs across multiple components, each of which impacts memory use.

About this task
Because AMS uses multiple components, such as Apache HBase and Apache Phoenix to store and query metrics, you
must consider multiple properties for tuning AMS memory use.

Procedure

• Tune the AMS memory settings using the following properties:

Table 44: AMS Memory Settings

Configuration Property Description

Advanced ams-env metrics_collector_heapsize Heap size configuration for the Collector.

Advanced ams-hbase-env hbase_regionserver_heapsize Heap size configuration for the single AMS
HBase Region Server.

Advanced ams-hbase-env hbase_master_heapsize Heap size configuration for the single AMS
HBase Master.

Advanced ams-hbase-env regionserver_xmn_size Maximum value for the young generation
heap size for the single AMS HBase
RegionServer.

Advanced ams-hbase-env hbase_master_xmn_size Maximum value for the young generation
heap size for the single AMS HBase Master.

43

using ambari core services Using Ambari Core Services

Customize AMS environment specific settings for a cluster
The Metrics Collector mode, TTL settings, memory settings, and disk space requirements for AMS depend on the
number of nodes in the cluster.

Procedure

• Tune your AMS environment based on the following recommendations and tuning guidelines:

Table 45: AMS Environment Tuning Recommendations

Cluster
Environment

Host Count Disk Space Collector
Mode

TTL Memory Settings

Single-Node
Sandbox

1 2GB embedded Reduce TTLs
to 7 Days

metrics_collector_heap_size=1024

hbase_regionserver_heapsize=512

hbase_master_heapsize=512

hbase_master_xmn_size=128

PoC 1-5 5GB embedded Reduce TTLs
to 30 Days

metrics_collector_heap_size=1024

hbase_regionserver_heapsize=512

hbase_master_heapsize=512

hbase_master_xmn_size=128

Pre-
Production

5-20 20GB embedded Reduce TTLs
to 3 Months

metrics_collector_heap_size=1024

hbase_regionserver_heapsize=1024

hbase_master_heapsize=512

hbase_master_xmn_size=128

Production 20-50 50GB embedded n.a. metrics_collector_heap_size=1024

hbase_regionserver_heapsize=1024

hbase_master_heapsize=512

hbase_master_xmn_size=128

Production 50-200 100GB embedded n.a. metrics_collector_heap_size=2048

hbase_regionserver_heapsize=2048

hbase_master_heapsize=2048

hbase_master_xmn_size=256

Production 200-400 200GB embedded n.a. metrics_collector_heap_size=2048

hbase_regionserver_heapsize=2048

hbase_master_heapsize=2048

hbase_master_xmn_size=512

Production 400-800 200GB distributed n.a. metrics_collector_heap_size=8192

hbase_regionserver_heapsize=122288

hbase_master_heapsize=1024

hbase_master_xmn_size=1024

regionserver_xmn_size=1024

44

using ambari core services Using Ambari Core Services

Cluster
Environment

Host Count Disk Space Collector
Mode

TTL Memory Settings

Production 800+ 500GB distributed n.a. metrics_collector_heap_size=12288

hbase_regionserver_heapsize=16384

hbase_master_heapsize=16384

hbase_master_xmn_size=2048

regionserver_xmn_size=1024

Move the AMS metrics collector
Use this procedure to move the Ambari Metrics Collector to a new host.

Procedure

1. In Ambari Web, stop the Ambari Metrics service.

2. Execute the following API call to delete the current Metric Collector component:
curl -u admin:admin -H "X-Requested-By:ambari" - i -X DELETE http:// [AMBARI_SERVER_NAME] >:8080/
api/v1/clusters/ [CLUSTER_NAME] /hosts/ [METRICS_COLLECTOR_HOSTNAME] /host_components/
[METRICS_COLLECTOR]

3. Execute the following API call to add Metrics Collector to a new host:
curl -u admin:admin -H "X-Requested-By:ambari" - i -X POST http:// [AMBARI_SERVER_NAME]:8080/
api/v1/clusters/ [CLUSTER_NAME]/hosts/ [METRICS_COLLECTOR_HOSTNAME]/host_components/
[METRICS_COLLECTOR]

4. In Ambari Web > Hosts, browse to the page of the host on which you installed the new Metrics Collector and
click Install the Metrics Collector.

5. In Ambari Web, start the Ambari Metrics service.

What to do next
Restarting all services is not required after moving the Ambari Metrics Collector, using Ambari 2.5 and later.

Enable specific HBase metrics
HBase metrics other than HBase RegionServer metrics are disabled by default.

About this task
Other than HBase RegionServer metrics, Ambari disables per-region, per-table, and per-user metrics by default.
These metrics can be numerous and therefore cause performance issues. If you want Ambari to collect these metrics,
you can enable them. You should test this option and confirm that your AMS performance is acceptable before
enabling additional HBase metrics in a production environment.

Procedure

1. On the Ambari Server, browse to the following location:
/var/lib/ambari-server/resources/stacks/HDP/#version/services/HBASE/package/templates/

2. Edit the following template files:
hadoop-metrics2-hbase.properties-GANGLIA-MASTER.j2
hadoop-metrics2-hbase.properties-GANGLIA-RS.j2

3. Either comment out or remove the following lines:
*.source.filter.class=org.apache.hadoop.metrics2.filter.RegexFilter
hbase.*.source.filter.exclude=.*(Regions|Users|Tables).*

4. Save the template files and restart Ambari Server for the changes to take effect.

What to do next
If you upgrade Ambari to a newer version, you must re-apply this change to the template file.

45

using ambari core services Using Ambari Core Services

Setting up AMS security
Settng secure access to Ambari Metrics System (AMS) includes defining the same password access to both Grafana
and AMS and establishing https protocol for both Grafana and AMS.

Change the Grafana admin password
Change the Grafana admin password in the Grafana UI, and in the AMS configuration, using Ambari Web.

About this task
If you need to change the Grafana Admin password after you initially install Ambari, you must change the password
directly in Grafana, and then make the same change in the Ambari Metrics configuration.

Procedure

1. In Ambari Web, browse to Services > Ambari Metrics > Quick Links, and then click Grafana.
The Grafana UI opens in read-only mode.

2. Click Sign In, in the left column.

3. Log in as admin, using the unchanged password.

4. Click the admin label in the left column.

5. In the admin profile, click Change password.

a) In Change password, enter the unchanged password.
b) Enter and confirm the new password.
c) Click Change Password.

6. Return to Ambari Web, browse to Services > Ambari Metrics > Configs.

7. On Configs, in the General section, update and confirm the Grafana Admin Password with the new password.

8. Click Save.

What to do next
Restart services, as prompted.

Set up https for Grafana
Limiting Grafana access to only HTTPS connections requires providing a certificate.

About this task
Using a self-signed certificate for initial trials is possible. Self-signed certificates are not recommended for production
environments. After your get your certificate, you must run a special setup command.

Procedure

1. Log in to the host on which Grafana resides.

2. Browse to the Grafana configuration directory.
cd /etc/ambari-metrics-grafana/conf/

3. Locate your certificate.

If you want to create a temporary self-signed certificate, you can use this as an example:

openssl genrsa -out ams-grafana.key 2048
openssl req -new -key ams-grafana.key -out ams-grafana.csr
openssl x509 -req -days 365 -in ams-grafana.csr -signkey ams-grafana.key -
out ams-grafana.crt

46

using ambari core services Using Ambari Core Services

4. Set the certificate, key file ownership, and permissions so that they are accessible to Grafana.

chown ams:hadoop ams-grafana.crt
chown ams:hadoop ams-grafana.key
chmod 400 ams-grafana.crt
chmod 400 ams-grafana.key

For a non-root Ambari user, use:

chmod 444 ams-grafana.crt

to enable the agent user to read the file.

5. In Ambari Web, browse to Services > Ambari Metrics > Configs.

6. Update the following properties in the Advanced ams-grafana-ini section:

protocol https

cert_file /etc/ambari-metrics-grafana/conf/ams-grafana.crt

cert-Key /etc/ambari-metrics-grafana/conf/ams-grafana.key

7. In Configs, click Save.

What to do next
Restart services, as prompted.

Set up https for AMS
Limiting AMS access to only HTTPS connections requires providing a certificate.

About this task
If you want to limit access to AMS to HTTPS connections, you must provide a certificate. While it is possible to use
a self-signed certificate for initial trials, it is not suitable for production environments. After your get your certificate,
you must run a special setup command.

Procedure

1. Create your own CA certificate.
openssl req -new -x509 -keyout ca.key -out ca.crt -days 365

2. Import CA certificate into the truststore.
keytool -keystore /<path>/truststore.jks -alias CARoot -import -file ca.crt -storepass bigdata

3. Check truststore.

keytool -keystore /<path>/truststore.jks -list
Enter keystore password:

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 2 entries

caroot, Feb 22, 2016, trustedCertEntry,
Certificate fingerprint (SHA1):
 AD:EE:A5:BC:A8:FA:61:2F:4D:B3:53:3D:29:23:58:AB:2E:B1:82:AF

You should see trustedCertEntry for CA.

4. Generate certificate for AMS Collector and store private key in keystore.

47

using ambari core services Using Ambari Core Services

keytool -genkey -alias c6401.ambari.apache.org -keyalg RSA -keysize 1024 -dname
"CN=c6401.ambari.apache.org,OU=IT,O=Apache,L=US,ST=US,C=US" -keypass bigdata -keystore /<path>/
keystore.jks -storepass bigdata

Note: If you use an alias different than the default hostname (c6401.ambari.apache.org), then, in step 12,
set the ssl.client.truststore.alias config to use that alias.

5. Create certificate request for AMS collector certificate.
keytool -keystore /<path>/keystore.jks -alias c6401.ambari.apache.org -certreq -file c6401.ambari.apache.org.csr -
storepass bigdata

6. Sign the certificate request with the CA certificate.
openssl x509 -req -CA ca.crt -CAkey ca.key -in c6401.ambari.apache.org.csr -out
c6401.ambari.apache.org_signed.crt -days 365 -CAcreateserial -passin pass:bigdata

7. Import CA certificate into the keystore.
keytool -keystore /<path>/keystore.jks -alias CARoot -import -file ca.crt -storepass bigdata

8. Import signed certificate into the keystore.
keytool -keystore /<path>/keystore.jks -alias c6401.ambari.apache.org -import -file
c6401.ambari.apache.org_signed.crt -storepass bigdata

9. Check keystore.

caroot2, Feb 22, 2016, trustedCertEntry,
Certificate fingerprint (SHA1):
 7C:B7:0C:27:8E:0D:31:E7:BE:F8:BE:A1:A4:1E:81:22:FC:E5:37:D7
[root@c6401 tmp]# keytool -keystore /tmp/keystore.jks -list
Enter keystore password:

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 2 entries

caroot, Feb 22, 2016, trustedCertEntry,
Certificate fingerprint (SHA1):
 AD:EE:A5:BC:A8:FA:61:2F:4D:B3:53:3D:29:23:58:AB:2E:B1:82:AF
c6401.ambari.apache.org, Feb 22, 2016, PrivateKeyEntry,
Certificate fingerprint (SHA1):
 A2:F9:BE:56:7A:7A:8B:4C:5E:A6:63:60:B7:70:50:43:34:14:EE:AF

You should see PrivateKeyEntry for the ams collector hostname entry and trustedCertEntry for CA.

10. Copy /[PATH]/truststore.jks to all nodes to /[PATH]/truststore.jks and set appropriate access permissions.

11. Copy /[PATH]/keystore.jks to AMS collector node ONLY to /[PATH]/keystore.jks and set appropriate access
permissions.

Recommended: set owner to ams user and access permnissions to 400.

12. In Ambari Web, update the following AMS configs, in Advanced:

• ams-site/timeline.metrics.service.http.policy=HTTPS_ONLY
• ams-ssl-server/ssl.server.keystore.keypassword=bigdata
• ams-ssl-server/ssl.server.keystore.location=/<path>/keystore.jks
• ams-ssl-server/ssl.server.keystore.password=bigdata
• ams-ssl-server/ssl.server.keystore.type=jks
• ams-ssl-server/ssl.server.truststore.location=/<path>/truststore.jks
• ams-ssl-server/ssl.server.truststore.password=bigdata
• ams-ssl-server/ssl.server.truststore.reload.interval=10000
• ams-ssl-server/ssl.server.truststore.type=jks
• ams-ssl-client/ssl.client.truststore.location=/<path>/truststore.jks
• ams-ssl-client/ssl.client.truststore.password=bigdata

48

using ambari core services Using Ambari Core Services

• ams-ssl-client/ssl.client.truststore.type=jks

13. In Ambari Web, Add the following AMS config property, using Custom ams-ssl-client > Add Property:

[metrics_collector_hostname_fqdn].ssl.client.truststore.alias=[Alias used to create certificate for AMS on the host
with the specified FQDN]. Default is hostname fqdn.

14. Restart services with stale configs.

15. Configure Ambari server to use truststore.
ambari-server setup-security Using python /usr/bin/python Security setup options...
===
Choose one of the following options: [1] Enable HTTPS for Ambari server. [2]
Encrypt passwords stored in ambari.properties file. [3] Setup Ambari kerberos
JAAS configuration. [4] Setup truststore. [5] Import certificate to truststore.
=== Enter
choice, (1-5): 4 Do you want to configure a truststore [y/n] (y)? TrustStore type [jks/jceks/pkcs12] (jks):jks Path to
TrustStore file :/<path>/keystore.jks Password for TrustStore: Re-enter password: Ambari Server 'setup-security'
completed successfully.

16. Configure ambari server to use https instead of http in requests to AMS Collector by adding
"server.timeline.metrics.https.enabled=true" to ambari.properties file.
echo "server.timeline.metrics.https.enabled=true" >> /etc/ambari-server/conf/ambari.properties

17. Restart ambari server.

Understanding Ambari log search
Ambari Log Search enables you to search for logs generated by Ambari-managed HDP components.

Ambari Log Search relies on the Ambari Infra service to provide Apache Solr indexing services. Two components
compose the Log Search solution:

Log Feeder

The Log Feeder component parses component logs. A Log Feeder is deployed to every node in the cluster and
interacts with all component logs on that host. When started, the Log Feeder begins to parse all known component
logs and sends them to the Apache Solr instances (managed by the Ambari Infra service) to be indexed.

By default, only FATAL, ERROR, and WARN logs are captured by the Log Feeder. You
can temporarily or permanently add other log levels using the Log Search UI filter settings

(for temporary log level capture) or through the Log Search configuration control in Ambari.

Log Search Server

The Log Search Server hosts the Log Search UI web application, providing the API that is used by Ambari and the
Log Search UI to access the indexed component logs. After logging in as a local or LDAP user, you can use the Log
Search UI to visualize, explore, and search indexed component logs.

Install Log Search
Use Ambari Web > +Add Services to install Ambari Log Search.

About this task
Log Search is a built-in service in Ambari 2.4 and later. You can install Log Search as part of an initial cluster
deployment, or add Log Search as a single service to an existing cluster.

Procedure

• During a new cluster installation, click +Add Services > Log Search.

Optionally, you can manually place the Log Search Server, on the same host as the Ambari Server.

49

using ambari core services Using Ambari Core Services

The Log Feeders are automatically installed on all nodes in the cluster.

Related Information
Add a service

Access log search UI
The Log Search UI is a purpose-built web application used to search HDP component logs.

About this task
The UI is focussed on helping operators quickly access and search logs from a single location. Logs can be filtered
by log level, time, component, and can be searched by keyword. Helpful tools such as histograms to show number
of logs by level for a time period are available, as well as controls to help rewind and fast forward search sessions,
contextual click to include/exclude terms in log viewing, and multi-tab displays for troubleshooting multi-component
and host issues.

Procedure

• In Ambari Web > Services > Log Search > Quick Links, click click Log Search.
The Log Search UI displays Service Logs.

View logs for background operations
Use Background Ops to link to log details.

About this task
When you perform lifecycle operations such as starting or stopping services, it is critical that you have access to logs
that can help you recover from potential failures. These logs are now available in Background Ops. Background
Ops also links to the Host Detail Logs tab, which lists all the log files that have been indexed and can be viewed for a
specific host.

50

https://docs.hortonworks.com/HDPDocuments/Ambari-2.7.0.0/managing-and-monitoring-ambari/content/amb_add_a_service.html

using ambari core services Using Ambari Core Services

Procedure

• In Background Ops, click Host Logs.

View logs for each host
Use Hosts > [HOST_FQDN] > Logs to view current logs for that host.

About this task
A Logs tab appears on each host detail page, containing a list of indexed, viewable log files, organized by service,
component, and type. You can open and search each of these files using a link to the Log Search UI.

Procedure

• On Host Details > Logs, for a specific component click Open in Log Search.

View service logs
Use Log Search > Service Logs to search across all component logs.

51

using ambari core services Using Ambari Core Services

About this task
The Service Logs UI is organized so that you can quickly see how many logs were captured for each log level
across the entire cluster, search for keywords, include and exclude components, and match logs to your search query,
filtering for specific log levels, components, and time ranges.

Procedure

• In Log Search, click Service Logs.
Service Logs displays options to refine your current log search results.

What to do next
View Access Logs.

View audit logs
Use Log Search > Audit Logs to audit logs across all component logs.

About this task
When troubleshooting HDFS-related issues, you might find it helpful to search for and spot trends in HDFS access
by users. The Audit Logs tab enables you to view HDFS audit log entries for a specific time frame, to see aggregated
usage data showing the top ten HDFS users by file system resources accessed, as well as the top ten file system
resources accessed across all users. This can help you find anomalies or hot and cold data sets.

Procedure

• Click Audit Logs.
Aggregated metrics about audit log information.

52

using ambari core services Using Ambari Core Services

Understanding Ambari Infra
Ambari Infra provides common shared services for stack components.

Many services in HDP depend on core services to index data. For example, Apache Atlas uses indexing services
for tagging lineage-free text search, and Apache Ranger uses indexing for audit data. The role of Ambari Infra is to
provide these common shared services for stack components.

Currently, the Ambari Infra service has only one component: the Infra Solr Instance. The Infra Solr Instance is a fully
managed Apache Solr installation. By default, a single-node SolrCloud installation is deployed when the Ambari
Infra Service is chosen for installation; however, you should install multiple Infra Solr Instances so that you have
distributed indexing and search for Atlas, Ranger, and LogSearch (Technical Preview).

To install multiple Infra Solr Instances, you simply add them to existing cluster hosts through Ambari’s +Add
Service capability. The number of Infra Solr Instances you deploy depends on the number of nodes in the cluster and
the services deployed.

Because one Ambari Infra Solr Instance is used by multiple HDP components, you should be careful when restarting
the service, to avoid disrupting those dependent services. In HDP 2.5 and later, Atlas, Ranger, and Log Search depend
on the Ambari Infra service.

Note:

Infra Solr Instance is intended for use only by HDP components. Use by third-party components or
applications is not supported.

Large clusters produce many log entries, and Ambari Infra provides a convenient utility for archiving and purging
logs that are no longer required. This utility is called the Solr Data Manager. The Solr Data Manager is a python
program available in /usr/bin/infra-solr-data-manager. This program allows users to quickly archive, delete, or save
data from a Solr collection, with the following usage options.

Related Information
Add a service

53

https://docs.hortonworks.com/HDPDocuments/Ambari-2.7.0.0/managing-and-monitoring-ambari/content/amb_add_a_service.html

using ambari core services Using Ambari Core Services

Operation Modes
Use one of three operation modes, based on what you want to do with your data.

-m MODE, --mode=MODE archive | delete | save

The mode to use depends on the intent. Archive stores data into the desired storage medium and then deletes the data
after it has been stored. Delete is self-explanatory. Save works just like Archive, except that data is not deleted after it
has been stored.

Connect to Solr
The URL to use to connect to the specific Solr Cloud instance.

-s SOLR_URL, --solr-url=[SOLR_URL]

For example:

http://c7401.ambari.apache.org:8886/solr.

-c COLLECTION, --collection=COLLECTION

The name of the Solr collection. For example: ‘hadoop_logs’

-k SOLR_KEYTAB,--solr-keytab=SOLR_KEYTAB

The keytab file to use when operating against a kerberized Solr instance.

-n SOLR_PRINCIPAL, --solr-principal=SOLR_PRINCIPAL

The principal name to use when operating against a kerberized Solr instance.

Record schema
Descriptions of the Record Schema command-line options.

-i ID_FIELD, --id-field=ID_FIELD

The name of the field in the solr schema to use as the unique identifier for each record.

-f FILTER_FIELD, --filter-field=FILTER_FIELD

The name of the field in the solr schema to filter off of. For example: 'logtime’

-o DATE_FORMAT, --date-format=DATE_FORMAT

The custom date format to use with the -d DAYS field to match log entries that are older than a certain number of
days.

-e END

Based on the filter field and date format, this argument conimages the date that should be used as the end of the date
range. If you use ‘2018-08-29T12:00:00.000Z’, then any records with a filter field that is after that date will be saved,
deleted, or archived depending on the mode.

-d DAYS, --days=DAYS

Based on the filter field and date format, this argument conimages the number days before today should be used as the
end of the range. If you use ‘30’, then any records with a filter field that is older than 30 days will be saved, deleted,
or archived depending on the mode.

-q ADDITIONAL_FILTER, --additional-filter=ADDITIONAL_FILTER

Any additional filter criteria to use to match records in the collection.

Extract records
Descriptions of the Extract Record command-line options.

-r READ_BLOCK_SIZE, --read-block-size=READ_BLOCK_SIZE

54

using ambari core services Using Ambari Core Services

The number of records to read at a time from Solr. For example: ‘10’ to read 10 records at a time.

-w WRITE_BLOCK_SIZE, --write-block-size=WRITE_BLOCK_SIZE

The number of records to write per output file. For example: ‘100’ to write 100 records per file.

-j NAME, --name=NAME name included in result files

Additional name to add to the final filename created in save or archive mode.

--json-file

Default output format is one valid json document per record delimited by a newline. This option will write out a
single valid JSON document containing all of the records.

-z COMPRESSION, --compression=COMPRESSION none | tar.gz | tar.bz2 | zip | gz

Depending on how output files will be analyzed, you have the choice to choose the optimal compression and file
format to use for output files. Gzip compression is used by default.

Write data to HDFS
Descriptions of the command-line options for writing data to HDFS.

-a HDFS_KEYTAB, --hdfs-keytab=HDFS_KEYTAB

The keytab file to use when writing data to a kerberized HDFS instance.

-l HDFS_PRINCIPAL, --hdfs-principal=HDFS_PRINCIPAL

The principal name to use when writing data to a kerberized HDFS instance.

-u HDFS_USER, --hdfs-user=HDFS_USER

The user to connect to HDFS as.

-p HDFS_PATH, --hdfs-path=HDFS_PATH

The path in HDFS to write data to in save or archive mode.

Write data to S3
Descriptions of the command-line options for writing data to S3.

-t KEY_FILE_PATH, --key-file-path=KEY_FILE_PATH

The path to the file on the local file system that contains the AWS Access and Secret Keys. The file should contain
the keys in this format: [ACCESS_KEY],[SECRET_KEY]

-b BUCKET, --bucket=BUCKET

The name of the bucket that data should be uploaded to in save or archive mode.

-y KEY_PREFIX, --key-prefix=KEY_PREFIX

The key prefix allows you to create a logical grouping of the objects in an S3 bucket. The prefix value is similar
to a directory name enabling you to store data in the same directory in a bucket. For example, if your Amazon
S3 bucket name is logs, and you set prefix to hadoop/, and the file on your storage device is hadoop_logs_-
_2017-10-28T01_25_40.693Z.json.gz, then the file would be identified by this URL: http://s3.amazonaws.com/logs/
hadoop/hadoop_logs_-_2017-10-28T01_25_40.693Z.json.gz

-g, --ignore-unfinished-uploading

To deal with connectivity issues, uploading extracted data can be retried. If you do not wish to resume uploads, use
the -g flag to disable this behaviour.

Write data locally
Descriptions of the command-line options for writing data locally.

55

using ambari core services Using Ambari Core Services

-x LOCAL_PATH, --local-path=LOCAL_PATH

The path on the local file system that should be used to write data to in save or archive mode

Example delete indexed data
A working example of deleting indexed data.

In delete mode (-m delete), the program deletes data from the Solr collection. This mode uses the filter field (-f
FITLER_FIELD) option to control which data should be removed from the index.

The command below will delete log entries from the hadoop_logs collection, which have been created before August
29, 2017, we'll use the -f option to specify the field in the Solr collection to use as a filter field, and the -e option to
denote the end of the range of values to remove.

infra-solr-data-manager -m delete -s
://c6401.ambari.apache.org:8886/solr -c hadoop_logs -f logtime -e
 2017-08-29T12:00:00.000Z

Example archive indexed data
A working example of archiving indexed data.

In archive mode, the program fetches data from the Solr collection and writes it out to HDFS or S3, then deletes the
data.

The program will fetch records from Solr and creates a file once the write block size is reached, or if there are no
more matching records found in Solr. The program keeps track of its progress by fetching the records ordered by the
filter field, and the id field, and always saves their last values. Once the file is written, it’s is compressed using the
configured compression type.

After the compressed file is created the program creates a command file containing instructions with next steps. In
case of any interruptions or error during the next run for the same collection the program will start executing the
saved command file, so all the data would be consistent. If the error is due to invalid configuration, and failures
persist, the -g option can be used to ignore the saved command file. The program supports writing data to HDFS, S3,
or Local Disk.

The command below will archive data from the solr collection hadoop_logs accessible at http://
c6401.ambari.apache.org:8886/solr, based on the field logtime, and will extract everything older than 1 day, read 10
documents at once, write 100 documents into a file, and copy the zip files into the local directory /tmp.

infra-solr-data-manager -m archive -s
http://c6401.ambari.apache.org:8886/solr -c hadoop_logs -f logtime -d
1 -r 10 -w 100 -x /tmp -v

Example save indexed data
A working example of saving indexed data.

Saving is similar to Archiving data except that the data is not deleted from Solr after the files are created and
uploaded. The Save mode is recommended for testing that the data is written as expected before running the program
in Archive mode with the same parameters.

The below example will save the last 3 days of hdfs audit logs into HDFS path "/" with the user hdfs, fetching data
from a kerberized Solr.

infra-solr-data-manager -m save -s
http://c6401.ambari.apache.org:8886/solr -c audit_logs -f logtime -d 3
-r 10 -w 100 -q type:\”hdfs_audit\” -j hdfs_audit -k
/etc/security/keytabs/ambari-infra-solr.service.keytab -n
infra-solr/c6401.ambari.apache.org@AMBARI.APACHE.ORG -u hdfs -p /

56

using ambari core services Using Ambari Core Services

Example analyze archived, indexed data with Hive
A working example of analyzing archived, indexed data with Hive.

Once data has been archived or saved to HDFS, Hive tables can be used to quickly access and analyzed stored data.
Only line delimited JSON files can be analyzed with Hive. Line delimited JSON files are created by default unless the
--json-file argument is passed. Data saved or archived using --json-file cannot be analyzed with Hive. In the following
examples, the hive-json-serde.jar is used to process the stored JSON data. Prior to creating the included tables, the jar
must be added in the Hive shell:

ADD JAR [PATH_TO_JAR]/hive-json-serde.jar

Here are some examples for table schemes for various log types. Using external tables is recommended, as it has
the advantage of keeping the archives in HDFS. First ensure a directory is created to store archived or stored line
delimited logs:

hadoop fs -mkdir [SOME_DIRECTORY_PATH]

Example Hadoop logs
A working example of creating an external table of Hadoop logs.

CREATE EXTERNAL TABLE hadoop_logs
(
logtime string,
level string,
thread_name string,
logger_name string,
file string,
line_number int,
method string,
log_message string,
cluster string,
type string,
path string,
logfile_line_number int,
host string,
ip string,
id string,
event_md5 string,
message_md5 string,
seq_num int
)
ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'
LOCATION '[SOME_DIRECTORY_PATH]';

Example audit logs
Recommendations for archiving audit logs.

As audit logs have a slightly different field set, we suggest to archive them separately using --additional-filter, and we
offer separate schemas for HDFS, Ambari, and Ranger audit logs.

Example HDFS audit logs
A working example of creating an external table of HDFS audit logs.

CREATE EXTERNAL TABLE audit_logs_hdfs
(
evtTime string,
level string,
logger_name string,
log_message string,
resource string,

57

using ambari core services Using Ambari Core Services

result int,
action string,
cliType string,
req_caller_id string,
ugi string,
reqUser string,
proxyUsers array<string>,
authType string,
proxyAuthType string,
dst string,
perm string,
cluster string,
type string,
path string,
logfile_line_number int,
host string,
ip string,
cliIP string,
id string,
event_md5 string,
message_md5 string,
seq_num int
)
ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'
LOCATION '[SOME_DIRECTORY_PATH]';

Example Ambari audit logs
A working example of creating an external table of Ambari audit logs.

CREATE EXTERNAL TABLE audit_logs_ambari
(
evtTime string,
log_message string,
resource string,
result int,
action string,
reason string,
ws_base_url string,
ws_command string,
ws_component string,
ws_details string,
ws_display_name string,
ws_os string,
ws_repo_id string,
ws_repo_version string,
ws_repositories string,
ws_request_id string,
ws_roles string,
ws_stack string,
ws_stack_version string,
ws_version_note string,
ws_version_number string,
ws_status string,
ws_result_status string,
cliType string,
reqUser string,
task_id int,
cluster string,
type string,
path string,
logfile_line_number int,
host string,

58

using ambari core services Using Ambari Core Services

cliIP string,
id string,
event_md5 string,
message_md5 string,
seq_num int
)
ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'
LOCATION '[SOME_DIRECTORY_PATH]';

Example Ranger audit logs
A working example of creating an external table of Ranger audit logs.

CREATE EXTERNAL TABLE audit_logs_ranger
(
evtTime string,
access string,
enforcer string,
resource string,
result int,
action string,
reason string,
resType string,
reqUser string,
cluster string,
cliIP string,
id string,
seq_num int
)
ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'
LOCATION '[SOME_DIRECTORY_PATH]';

Tuning performance for Ambari Infra
Recommendations for tuning your operating system and Solr, based on how you use Ambari Infra and Ranger in your
environment.

When using Ambari Infra to index and store Ranger audit logs, you should properly tune Solr to handle the number of
audit records stored per day. The following topicss describe recommendations for tuning your operating system and
Solr, based on how you use Ambari Infra and Ranger in your environment.

Tuning your operating system for use with Solr
To avoid many open network connections and exceptions related to creating new native threads:

Solr clients use many network connections when indexing and searching, and to avoid many open network
connections, the following sysctl parameters are recommended:

net.ipv4.tcp_max_tw_buckets = 1440000
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_tw_reuse = 1

These settings can be made permanent by placing them in /etc/sysctl.d/net.conf, or they can be set at runtime using
the following sysctl command example:

sysctl -w net.ipv4.tcp_max_tw_buckets=1440000
sysctl -w net.ipv4.tcp_tw_recycle=1
sysctl -w net.ipv4.tcp_tw_reuse=1

59

using ambari core services Using Ambari Core Services

Additionally, the number of user processes for solr should be increased to avoid exceptions related to creating new
native threads. This can be done by creating a new file named /etc/security/limits.d/infra-solr.conf with the following
contents:

infra-solr - nproc 6000

Tuning JVM settings for Solr
Heap sizing settings are very important for production Solr instances.

About this task
The heap sizing settings are very important for production Solr instances when indexing many Ranger audit logs. For
production deployments, we suggest setting the Infra Solr Minimum Heap Size, and Infra Solr Maximum Heap Size
to 12 GB. These settings can be found and applied by following the steps below:

Procedure

1. In Ambari Web, browse to Services > Ambari Infra > Configs.

2. In Settings, you will see two sliders controlling the Infra Solr Heap Size.

3. Set the Infra Solr Minimum Heap Size to 12GB or 12,288MB.

4. Set the Infra Solr Maximum Heap Size to 12GB or 12,288MB.

5. Click Save to save the configuration.

6. Restart the affected services as prompted by Ambari.

The value used for the -XX:G1HeapRegionSize is based on the 12GB Solr Maximum Heap recommended. If you
choose to use a different heap size for the Solr server, please consult the following table for recommendations:

Table 46: Garbage Collection Heap Size Requirements for Solr

Heap Size G1HeapRegionSize

< 4GB 1MB

4-8GB 2MB

8-16GB 4MB

16-32GB 8MB

32-64GB 16MB

>64GB 32MB

Tuning GC settings for Solr
To use the G1 Garbage Collector with the Ambari Infra Solr Instance, follow these steps.

About this task
The garbage collection settings are very important for production Solr instances when indexing many Ranger audit
logs. Using the G1 Garbage Collector is also recommended for production deployments.

Procedure

1. In Ambari Web, browse to Services > Ambari Infra > Configs.

2. In Advanced, expand the section for Advanced infra-solr-env .

3. In the infra-solr-env template, locate the multi-line GC_TUNE environmental variable definition, and replace it
with the following content:

GC_TUNE="-XX:+UseG1GC
 -XX:+PerfDisableSharedMem

60

using ambari core services Using Ambari Core Services

 -XX:+ParallelRefProcEnabled
 -XX:G1HeapRegionSize=4m
 -XX:MaxGCPauseMillis=250
 -XX:InitiatingHeapOccupancyPercent=75
 -XX:+UseLargePages
 -XX:+AggressiveOpts"

The value used for the -XX:G1HeapRegionSize is based on the 12GB Solr Maximum Heap recommended. If you
choose to use a different heap size for the Solr server, please consult the following table for recommendations:

Table 47: Garbage Collection Heap Size Requirements for Solr

Heap Size G1HeapRegionSize

< 4GB 1MB

4-8GB 2MB

8-16GB 4MB

16-32GB 8MB

32-64GB 16MB

>64GB 32MB

Tuning environment specific parameters
Based on the number of audit records per day.

About this task
Each of the recommendations below are dependent on the number of audit records that are indexed per day. To
quickly determine how many audit records are indexed per day, use the command examples below:

Procedure

• Using a HTTP client such as curl, execute the following command:
curl -g "http://[AMBARI_INFRA_HOSTNAME]:8886/solr/ranger_audits/select?q=(evtTime:[NOW-7DAYS+TO
+*])&wt=json&indent=true&rows=0"
You should receive a message similar to the following:

{
 "responseHeader":{
 "status":0,
 "QTime":1,
 "params":{
 "q":"evtTime:[NOW-7DAYS TO *]",
 "indent":"true",
 "rows":"0",
 "wt":"json"}},
 "response":{"numFound":306,"start":0,"docs":[]
 }}

• Take the numFound element of the response and divide it by 7 to get the average number of audit records being
indexed per day. You can also replace the ‘7DAYS’ in the curl request with a broader time range, if necessary,
using the following key words:

• 1MONTHS
• 7DAYS

• Just ensure you divide by the appropriate number if you change the event time query. The average number of
records per day will be used to identify which recommendations below apply to your environment.

61

using ambari core services Using Ambari Core Services

Less Than 50 Million Audit Records Per Day Based on the Solr REST API call if your average
number of documents per day is less than 50 million
records per day, the following recommendations
apply. In each recommendation, the time to live, or
TTL, which controls how long a document should
be kept in the index until it is removed is taken into
consideration. The default TTL is 90 days, but some
customers choose to be more aggressive, and remove
documents from the index after 30 days. Due to this,
recommendations for both common TTL settings are
specified.

These recommendations assume that you are using
our recommendation of 12GB heap per Solr server
instance. In each situation we have recommendations
for co-locating Solr with other master services,
and for using dedicated Solr servers. Testing has
shown that Solr performance requires different server
counts depending on whether Solr is co-located or on
dedicated servers. Based on our testing with Ranger,
Solr shard sizes should be around 25GB for best overall
performance. However, Solr shard sizes can go up to
50GB without a significant performance impact.

This configuration is our best recommendation for just
getting started with Ranger and Ambari Infra so the
only recommendation is using the default TTL of 90
days.

Default Time To Live (TTL) 90 days:

• Estimated total index size: ~150 GB to 450 GB
• Total number of primary/leader shards: 6
• Total number of shards including 1 replica each: 12
• Total number of co-located Solr nodes: ~3 nodes,

up to 2 shards per node

(does not include replicas)
• Total number of dedicated Solr nodes: ~1 node, up

to 12 shards per node

(does not include replicas)

50 - 100 Million Audit Records Per Day 50 to 100 million records ~ 5 - 10 GB data per day.

Default Time To Live (TTL) 90 days:

• Estimated total index size: ~ 450 - 900 GB for 90
days

• Total number of primary/leader shards: 18-36
• Total number of shards including 1 replica each:

36-72
• Total number of co-located Solr nodes: ~9-18

nodes, up to 2 shards per node

(does not include replicas)
• Total number of dedicated Solr nodes: ~3-6 nodes,

up to 12 shards per node

62

using ambari core services Using Ambari Core Services

(does not include replicas)

Custom Time To Live (TTL) 30 days:

• Estimated total index size: 150 - 300 GB for 30
days

• Total number of primary/leader shards: 6-12
• Total number of shards including 1 replica each:

12-24
• Total number of co-located Solr nodes: ~3-6 nodes,

up to 2 shards per node

(does not include replicas)
• Total number of dedicated Solr nodes: ~1-2 nodes,

up to 12 shards per node

(does not include replicas)

100 - 200 Million Audit Records Per Day 100 to 200 million records ~ 10 - 20 GB data per day.

Default Time To Live (TTL) 90 days:

• Estimated total index size: ~ 900 - 1800 GB for 90
days

• Total number of primary/leader shards: 36-72
• Total number of shards including 1 replica each:

72-144
• Total number of co-located Solr nodes: ~18-36

nodes, up to 2 shards per node

(does not include replicas)
• Total number of dedicated Solr nodes: ~3-6 nodes,

up to 12 shards per node

(does not include replicas)

Custom Time To Live (TTL) 30 days:

• Estimated total index size: 300 - 600 GB for 30
days

• Total number of primary/leader shards: 12-24
• Total number of shards including 1 replica each:

24-48
• Total number of co-located Solr nodes: ~6-12

nodes, up to 2 shards per node

(does not include replicas)
• Total number of dedicated Solr nodes: ~1-3 nodes,

up to 12 shards per node

(does not include replicas)

• If you choose to use at least 1 replica for high availability, then increase the number of nodes accordingly. If high
availability is a requirement, then consider using no less than 3 Solr nodes in any configuration.

• As illustrated in these examples, a lower TTL requires less resources. If your compliance objectives call for
longer data retention, you can use the SolrDataManager to archive data into long term storage (HDFS, or S3) and
provides Hive tables allowing you to easily query that data. With this strategy, hot data can be stored in Solr for
rapid access through the Ranger UI, and cold data can be archived to HDFS, or S3 with access provided through
Ranger.

63

using ambari core services Using Ambari Core Services

Adding new shards for Solr
Refer to the Apache Solr reference guide if you must add shards for Solr.

If after reviewing the other recommendations for Solr , you need to add additional shards to your existing
deployment, the following Solr documentation will help you understand how to accomplish that task: https://
archive.apache.org/dist/lucene/solr/ref-guide/apache-solr-ref-guide-5.5.pdf

Reindexing data to reduce Solr out of memory exception errors
How to enable Doc Values as a solution.

When using Ambari Infra with Ranger Audit, if you are seeing many instances of Solr exiting with Java “Out
Of Memory” exceptions, a solution exists to update the Ranger Audit schema to use less heap memory by
enabling DocValues. This change requires a re-index of data and is disruptive, but helps tremendously with
heap memory consumption. Refer to this HCC article for the instructions on making this change: https://
community.hortonworks.com/articles/156933/restore-backup-ranger-audits-to-newly-collection.html

64

https://archive.apache.org/dist/lucene/solr/ref-guide/apache-solr-ref-guide-5.5.pdf
https://archive.apache.org/dist/lucene/solr/ref-guide/apache-solr-ref-guide-5.5.pdf
https://community.hortonworks.com/articles/156933/restore-backup-ranger-audits-to-newly-collection.html
https://community.hortonworks.com/articles/156933/restore-backup-ranger-audits-to-newly-collection.html

	Contents
	Using Ambari Core Services
	Understanding Ambari Metrics Service
	Access Grafana
	View Grafana dashboards
	View selected metrics in a Grafana dashboard
	View metrics for selected hosts

	Grafana dashboards reference
	AMS HBase dashboards
	AMS HBase Home
	AMS HBase RegionServers
	AMS HBase Misc

	Ambari dashboards
	Ambari Server database
	Ambari Server JVM
	Ambari Server top n

	Druid Dashboards
	Druid Home
	Druid Ingestion
	Druid Query

	HDFS Dashboards
	HDFS Home
	HDFS NameNodes
	HDFS DataNodes
	HDFS top n
	HDFS Users

	YARN Dashboards
	YARN Home
	YARN Applications
	YARN MR JobHistory Server
	YARN NodeManagers
	YARN Queues
	YARN ResourceManager
	YARN TimelineServer

	Hive Dashboards
	Hive Home
	Hive HiveMetaStore
	Hive HiveServer2

	Hive LLAP Dashboards
	Hive LLAP Heatmap
	Hive LLAP Overview
	Hive LLAP Daemon

	HBase Dashboards
	HBase Home
	HBase RegionServers
	HBase Misc
	HBase Tables
	HBase Users

	Kafka Dashboards
	Kafka Home
	Kafka Hosts
	Kafka Topics

	Storm Dashboards
	Storm Home
	Storm Topology
	Storm Components

	System Dashboards
	System Home
	System Servers

	NiFi Dashboard
	NiFi Home

	Tuning performance for AMS
	Customize the AMS collector mode
	Customize AMS TTL settings
	Customize AMS memory settings
	Customize AMS environment specific settings for a cluster
	Move the AMS metrics collector
	Enable specific HBase metrics

	Setting up AMS security
	Change the Grafana admin password
	Set up https for Grafana
	Set up https for AMS

	Understanding Ambari log search
	Install Log Search
	Access log search UI
	View logs for background operations
	View logs for each host
	View service logs
	View audit logs

	Understanding Ambari Infra
	Operation Modes
	Connect to Solr
	Record schema
	Extract records
	Write data to HDFS
	Write data to S3
	Write data locally
	Example delete indexed data
	Example archive indexed data
	Example save indexed data
	Example analyze archived, indexed data with Hive
	Example Hadoop logs
	Example audit logs
	Example HDFS audit logs
	Example Ambari audit logs
	Example Ranger audit logs

	Tuning performance for Ambari Infra
	Tuning your operating system for use with Solr
	Tuning JVM settings for Solr
	Tuning GC settings for Solr
	Tuning environment specific parameters
	Adding new shards for Solr
	Reindexing data to reduce Solr out of memory exception errors

